Convergence to a~process with independent increments in a~scheme of increasing sums of dependent random variables
Sbornik. Mathematics, Tome 23 (1974) no. 2, pp. 271-286

Voir la notice de l'article provenant de la source Math-Net.Ru

This article derives conditions under which a sequence of random set functions on subsets of a finite-dimensional space constructed in terms of increasing sums of dependent nonnegative random variables converges (in the sense of convergence of finite-dimensional distributions) to a random set function with independent increments which have infinitely divisible distributions. The results obtained are applied to the problem of the number of long repetitions in a sequence of trials. Bibliography: 4 titles.
@article{SM_1974_23_2_a6,
     author = {V. G. Mikhailov},
     title = {Convergence to a~process with independent increments in a~scheme of increasing sums of dependent random variables},
     journal = {Sbornik. Mathematics},
     pages = {271--286},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_23_2_a6/}
}
TY  - JOUR
AU  - V. G. Mikhailov
TI  - Convergence to a~process with independent increments in a~scheme of increasing sums of dependent random variables
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 271
EP  - 286
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1974_23_2_a6/
LA  - en
ID  - SM_1974_23_2_a6
ER  - 
%0 Journal Article
%A V. G. Mikhailov
%T Convergence to a~process with independent increments in a~scheme of increasing sums of dependent random variables
%J Sbornik. Mathematics
%D 1974
%P 271-286
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1974_23_2_a6/
%G en
%F SM_1974_23_2_a6
V. G. Mikhailov. Convergence to a~process with independent increments in a~scheme of increasing sums of dependent random variables. Sbornik. Mathematics, Tome 23 (1974) no. 2, pp. 271-286. http://geodesic.mathdoc.fr/item/SM_1974_23_2_a6/