Convergence to a process with independent increments in a scheme of increasing sums of dependent random variables
Sbornik. Mathematics, Tome 23 (1974) no. 2, pp. 271-286 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article derives conditions under which a sequence of random set functions on subsets of a finite-dimensional space constructed in terms of increasing sums of dependent nonnegative random variables converges (in the sense of convergence of finite-dimensional distributions) to a random set function with independent increments which have infinitely divisible distributions. The results obtained are applied to the problem of the number of long repetitions in a sequence of trials. Bibliography: 4 titles.
@article{SM_1974_23_2_a6,
     author = {V. G. Mikhailov},
     title = {Convergence to a~process with independent increments in a~scheme of increasing sums of dependent random variables},
     journal = {Sbornik. Mathematics},
     pages = {271--286},
     year = {1974},
     volume = {23},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_23_2_a6/}
}
TY  - JOUR
AU  - V. G. Mikhailov
TI  - Convergence to a process with independent increments in a scheme of increasing sums of dependent random variables
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 271
EP  - 286
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1974_23_2_a6/
LA  - en
ID  - SM_1974_23_2_a6
ER  - 
%0 Journal Article
%A V. G. Mikhailov
%T Convergence to a process with independent increments in a scheme of increasing sums of dependent random variables
%J Sbornik. Mathematics
%D 1974
%P 271-286
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1974_23_2_a6/
%G en
%F SM_1974_23_2_a6
V. G. Mikhailov. Convergence to a process with independent increments in a scheme of increasing sums of dependent random variables. Sbornik. Mathematics, Tome 23 (1974) no. 2, pp. 271-286. http://geodesic.mathdoc.fr/item/SM_1974_23_2_a6/

[1] B. A. Sevastyanov, “Predelnyi zakon Puassona v skheme summ zavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., XVII:4 (1972), 733–738

[2] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, izd-vo «Nauka», Moskva, 1972

[3] A. M. Zubkov, V. G. Mikhailov, “Predelnye raspredeleniya sluchainykh velichin, svyazannykh s dlinnymi povtoreniyami v posledovatelnosti nezavisimykh ispytanii”, Teoriya veroyatn. i ee primen., XIX:1 (1974), 173–181 | MR

[4] V. G. Mikhailov, “Predelnye raspredeleniya sluchainykh velichin, svyazannykh s mnogokratnymi dlinnymi povtoreniyami v posledovatelnosti nezavisimykh ispytanii”, Teoriya veroyatn. i ee primen., XIX:1 (1974), 182–187