Convergence to a~process with independent increments in a~scheme of increasing sums of dependent random variables
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 23 (1974) no. 2, pp. 271-286
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This article derives conditions under which a sequence of random set functions on subsets of a finite-dimensional space constructed in terms of increasing sums of dependent nonnegative random variables converges (in the sense of convergence of finite-dimensional distributions) to a random set function with independent increments which have infinitely divisible distributions. The results obtained are applied to the problem of the number of long repetitions in a sequence of trials.
Bibliography: 4 titles.
			
            
            
            
          
        
      @article{SM_1974_23_2_a6,
     author = {V. G. Mikhailov},
     title = {Convergence to a~process with independent increments in a~scheme of increasing sums of dependent random variables},
     journal = {Sbornik. Mathematics},
     pages = {271--286},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_23_2_a6/}
}
                      
                      
                    TY - JOUR AU - V. G. Mikhailov TI - Convergence to a~process with independent increments in a~scheme of increasing sums of dependent random variables JO - Sbornik. Mathematics PY - 1974 SP - 271 EP - 286 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1974_23_2_a6/ LA - en ID - SM_1974_23_2_a6 ER -
V. G. Mikhailov. Convergence to a~process with independent increments in a~scheme of increasing sums of dependent random variables. Sbornik. Mathematics, Tome 23 (1974) no. 2, pp. 271-286. http://geodesic.mathdoc.fr/item/SM_1974_23_2_a6/
