Convergence to a process with independent increments in a scheme of increasing sums of dependent random variables
Sbornik. Mathematics, Tome 23 (1974) no. 2, pp. 271-286
Cet article a éte moissonné depuis la source Math-Net.Ru
This article derives conditions under which a sequence of random set functions on subsets of a finite-dimensional space constructed in terms of increasing sums of dependent nonnegative random variables converges (in the sense of convergence of finite-dimensional distributions) to a random set function with independent increments which have infinitely divisible distributions. The results obtained are applied to the problem of the number of long repetitions in a sequence of trials. Bibliography: 4 titles.
@article{SM_1974_23_2_a6,
author = {V. G. Mikhailov},
title = {Convergence to a~process with independent increments in a~scheme of increasing sums of dependent random variables},
journal = {Sbornik. Mathematics},
pages = {271--286},
year = {1974},
volume = {23},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1974_23_2_a6/}
}
TY - JOUR AU - V. G. Mikhailov TI - Convergence to a process with independent increments in a scheme of increasing sums of dependent random variables JO - Sbornik. Mathematics PY - 1974 SP - 271 EP - 286 VL - 23 IS - 2 UR - http://geodesic.mathdoc.fr/item/SM_1974_23_2_a6/ LA - en ID - SM_1974_23_2_a6 ER -
V. G. Mikhailov. Convergence to a process with independent increments in a scheme of increasing sums of dependent random variables. Sbornik. Mathematics, Tome 23 (1974) no. 2, pp. 271-286. http://geodesic.mathdoc.fr/item/SM_1974_23_2_a6/
[1] B. A. Sevastyanov, “Predelnyi zakon Puassona v skheme summ zavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., XVII:4 (1972), 733–738
[2] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, izd-vo «Nauka», Moskva, 1972
[3] A. M. Zubkov, V. G. Mikhailov, “Predelnye raspredeleniya sluchainykh velichin, svyazannykh s dlinnymi povtoreniyami v posledovatelnosti nezavisimykh ispytanii”, Teoriya veroyatn. i ee primen., XIX:1 (1974), 173–181 | MR
[4] V. G. Mikhailov, “Predelnye raspredeleniya sluchainykh velichin, svyazannykh s mnogokratnymi dlinnymi povtoreniyami v posledovatelnosti nezavisimykh ispytanii”, Teoriya veroyatn. i ee primen., XIX:1 (1974), 182–187