Sources and sinks of $A$-diffeomorphisms of surfaces
Sbornik. Mathematics, Tome 23 (1974) no. 2, pp. 233-253 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper the mechanism of the appearance of zero-dimensional sinks and sources in the presence of one-dimensional basic sets of diffeomorphisms of two-dimensional surfaces, satisfying Axiom A, is studied. New examples are constructed of one-dimensional basic sets of structurally stable diffeomorphisms of the two-dimensional sphere. The existence is proved of zero-dimensional sinks and sources of diffeomorphisms of orientable surfaces of genus less than two, which are not $Y$-diffeomorphisms. An estimate is given of the number of amply situated basic sets of $A$-diffeomorphisms of orientable surfaces by means of topological invariants of the surfaces. Figures: 2. Bibliography: 17 titles.
@article{SM_1974_23_2_a4,
     author = {R. V. Plykin},
     title = {Sources and sinks of $A$-diffeomorphisms of surfaces},
     journal = {Sbornik. Mathematics},
     pages = {233--253},
     year = {1974},
     volume = {23},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_23_2_a4/}
}
TY  - JOUR
AU  - R. V. Plykin
TI  - Sources and sinks of $A$-diffeomorphisms of surfaces
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 233
EP  - 253
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1974_23_2_a4/
LA  - en
ID  - SM_1974_23_2_a4
ER  - 
%0 Journal Article
%A R. V. Plykin
%T Sources and sinks of $A$-diffeomorphisms of surfaces
%J Sbornik. Mathematics
%D 1974
%P 233-253
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1974_23_2_a4/
%G en
%F SM_1974_23_2_a4
R. V. Plykin. Sources and sinks of $A$-diffeomorphisms of surfaces. Sbornik. Mathematics, Tome 23 (1974) no. 2, pp. 233-253. http://geodesic.mathdoc.fr/item/SM_1974_23_2_a4/

[1] D. V. Anosov, “Geodezicheskie potoki na zamknutykh mnogoobraziyakh otritsatelnoi krivizny”, Trudy matem. in-ta im. V. A. Steklova, XC (1967)

[2] D. V. Anosov, “Ob odnom klasse invariantnykh mnozhestv gladkikh dinamicheskikh sistem”, Mezhdunarodnyi simpozium po nelineinym kolebaniyam, Tezisy dokladov, Kiev, 1969

[3] M. W. Hirsch, C. C. Pugh, “Stable manifolds and hyperbolic sets”, Proc. Berk. Symp. on Global Analysis, 14 (1970), 133–163 | MR | Zbl

[4] K. Kuratovskii, Topologiya, t. 2, izd-vo «Mir», Moskva, 1969 | MR

[5] S. E. Newhouse, “Hyperbolic limit sets”, Trans. Amer. Math. Soc., 167 (1972), 125–150 | DOI | MR | Zbl

[6] S. E. Newhouse, “On codimension one Anosov diffeomorphisms”, Amer. J. Math., 92:4 (1970), 761–770 | DOI | MR | Zbl

[7] S. Smeil, “Dinamicheskie sistemy i problema topologicheskoi sopryazhennosti diffeomorfizmov”, Matematika, 11:4 (1967), 69–78

[8] S. Smeil, “Differentsiruemye dinamicheskie sistemy”, Uspekhi matem. nauk, XXV:1 (151) (1970), 113–185 | MR

[9] E. Spener, Algebraicheskaya topologiya, izd-vo «Mir», Moskva, 1971 | MR

[10] G. Zeifert, V. Trelfall, Topologiya, Gostekhizdat, Moskva, 1938

[11] A. B. Katok, “Dinamicheskie sistemy s giperbolicheskoi strukturoi”, Devyataya letnyaya matem. shkola, Kiev, 1972, 125–211 | MR

[12] R. F. Williams, “One dimensional nonwandering sets”, Topology, 6 (1967), 473–478 | DOI | MR

[13] R. F. Williams, “Classification of 1-dimensional attractors”, Proc. Berk. Symp. on Global Analysis, 14 (1970), 341–361 | MR | Zbl

[14] R. F. Williams, “The $DA$-maps of Smale and structural stability”, Proc. Berk. Symp. on Global Analysis, 14 (1970), 329–334 | MR | Zbl

[15] J. W. Robbin, “A structural stability theorem”, Ann. Math., 94:3 (1971), 447–493 | DOI | MR | Zbl

[16] R. V. Plykin, “O topologii bazisnykh mnozhestv diffeomorfizmov Smeila”, Matem. sb., 84 (126) (1971), 301–312 | MR | Zbl

[17] R. V. Plykin, “Diffeomorfizmy Smeila na zamknutykh poverkhnostyakh”, Uspekhi matem. nauk, XXIV:2 (146) (1969), 231–232 | MR