Endomorphism rings of free modules
Sbornik. Mathematics, Tome 23 (1974) no. 2, pp. 215-231

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose $\mathfrak a$ is some property of modules. Let $\mathfrak{R_a}$ denote the class of rings over which all modules possess property $\mathfrak a$. The main theorem of this paper answers the following question for a rather extensive class of properties $\mathfrak a$; what must the property $\mathfrak b$ of modules be in order that $R\in\mathfrak{R_a}$ if and only if $\operatorname{End}_R(F)\in\mathfrak{R_b}$, for any free $R$-module $F$? Among the corollaries are many well-known theorems relating properties of the ring $R$ and the rings $\operatorname{End}_R(F)$, and also a number of new results of similar type. Bibliography: 35 titles.
@article{SM_1974_23_2_a3,
     author = {G. M. Brodskii},
     title = {Endomorphism rings of free modules},
     journal = {Sbornik. Mathematics},
     pages = {215--231},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_23_2_a3/}
}
TY  - JOUR
AU  - G. M. Brodskii
TI  - Endomorphism rings of free modules
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 215
EP  - 231
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1974_23_2_a3/
LA  - en
ID  - SM_1974_23_2_a3
ER  - 
%0 Journal Article
%A G. M. Brodskii
%T Endomorphism rings of free modules
%J Sbornik. Mathematics
%D 1974
%P 215-231
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1974_23_2_a3/
%G en
%F SM_1974_23_2_a3
G. M. Brodskii. Endomorphism rings of free modules. Sbornik. Mathematics, Tome 23 (1974) no. 2, pp. 215-231. http://geodesic.mathdoc.fr/item/SM_1974_23_2_a3/