Nonunimodular ring groups and Hopf–von Neumann algebras
Sbornik. Mathematics, Tome 23 (1974) no. 2, pp. 185-214 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A number of authors have introduced ring groups as objects generalizing locally compact groups. An analogue of the Pontryagin principle of duality holds for ring groups. In this paper we introduce a wider class of ring groups, one including the locally compact groups. A construction is given whereby to each ring group $\mathfrak G$ there is defined a dual ring group $\widehat{\mathfrak G}$; here $\widehat{\widehat{\mathfrak G}}=\mathfrak G$. By definition a ring group is determined by a $W^*$-algebra $\mathfrak A$ (the space of the ring group) equipped with an additional structure which allows $ \mathfrak A$ to be considered, in particular, as a Hopf–von Neumann algebra. When $\mathfrak G$ is a locally compact group, $\mathfrak A$ is the $W^*$-algebra of bounded measurable functions on $\mathfrak G$, considered in the natural way as operators in $L_2(\mathfrak G)$. Bibliography: 15 titles.
@article{SM_1974_23_2_a2,
     author = {L. I. Vainerman and G. I. Kats},
     title = {Nonunimodular ring groups and {Hopf{\textendash}von~Neumann} algebras},
     journal = {Sbornik. Mathematics},
     pages = {185--214},
     year = {1974},
     volume = {23},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_23_2_a2/}
}
TY  - JOUR
AU  - L. I. Vainerman
AU  - G. I. Kats
TI  - Nonunimodular ring groups and Hopf–von Neumann algebras
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 185
EP  - 214
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1974_23_2_a2/
LA  - en
ID  - SM_1974_23_2_a2
ER  - 
%0 Journal Article
%A L. I. Vainerman
%A G. I. Kats
%T Nonunimodular ring groups and Hopf–von Neumann algebras
%J Sbornik. Mathematics
%D 1974
%P 185-214
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1974_23_2_a2/
%G en
%F SM_1974_23_2_a2
L. I. Vainerman; G. I. Kats. Nonunimodular ring groups and Hopf–von Neumann algebras. Sbornik. Mathematics, Tome 23 (1974) no. 2, pp. 185-214. http://geodesic.mathdoc.fr/item/SM_1974_23_2_a2/

[1] G. I. Kats, “Obobschenie gruppovogo printsipa dvoistvennosti”, DAN SSSR, 138:2 (1961), 275–278 ; “Кольцевые группы и принцип двойственности. I, II”, Труды Моск. матем. об-ва, XII (1963), 259–301 ; Труды Моск. матем. об-ва, XIII (1965), 84–113 | Zbl

[2] M. Takesaki, “Tomita's theory of modular Hilbert algebras and its applications”, Lecture Notes in Math., 128 (1970) | MR | Zbl

[3] J. Dixmier, “Algebres quase-unitaires”, Comm. Math. Helv., 26 (1952), 275–322 | DOI | MR | Zbl

[4] F. Combes, “Poids sur une $C^*$-algebre”, J. math. pures et appl., 47 (1968), 57–100 | MR | Zbl

[5] F. Combes, “Poids associe a une algebre hilbertienne a gauche”, Comp. Math., 23:1 (1971), 49–77 | MR | Zbl

[6] G. I. Kats, V. G. Palyutkin, “Konechnye koltsevye gruppy”, Trudy Mosk. matem. ob-va, XV (1966), 224–261

[7] M. Takesaki, “A characterization of group algebras as a converse of Tannaka-Stinespring-Tatsuuma duality theorem”, Amer. J. Math., 91:2 (1969), 529–564 | DOI | MR | Zbl

[8] W. F. Stinespring, “Integration theoremes for gages and duality for unimodular groups”, Trans. Amer. Math. Soc., 90 (1959), 15–56 ; Matematika, 6:2 (1962), 107–149 | DOI | MR | Zbl

[9] M. G. Krein, “Printsip dvoistvennosti dlya bikompaktnoi gruppy i kvadratnoi blok-algebry”, DAN SSSR, 69:6 (1949), 725–729 | MR

[10] L. I. Vainerman, “Kharakterizatsiya ob'ektov, dvoistvennykh k lokalno kompaktnym gruppam”, Funkts. analiz, 8:1 (1974), 75–76 | MR | Zbl

[11] M. Takesaki, “Duality and von Neumann algebras”, Bull. Amer. Math. Soc., 77:4 (1971), 553–557 ; Lecture Notes in Math., 247 (1972), 665–786 | DOI | MR | Zbl | DOI | MR | Zbl

[12] G. I. Kats, “Kompaktnye i diskretnye koltsevye gruppy”, Ukr. matem. zh., 14:3 (1962), 260–269 | MR

[13] J. Dixmier, Les algebres d'operateurs dans l'espace hilbertien (Algebres de von Neumann), Paris, 1957 | MR

[14] L. I. Vainerman, G. I. Kats, “Neunimodulyarnye koltsevye gruppy i algebry Khopfa-fon-Neimana”, DAN SSSR, 211:5 (1973), 1031–1034 | MR | Zbl

[15] G. K. Pedersen, M. Takesaki, “The Radon-Nikodym theorem for the Neumann algebras”, Acta math., 130:1–2 (1973), 53–87 | DOI | MR | Zbl