Nonunimodular ring groups and Hopf--von~Neumann algebras
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 23 (1974) no. 2, pp. 185-214
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A number of authors have introduced ring groups as objects generalizing locally compact groups. An analogue of the Pontryagin principle of duality holds for ring groups. In this paper we introduce a wider class of ring groups, one including the locally compact groups.
A construction is given whereby to each ring group $\mathfrak G$ there is defined a dual ring group $\widehat{\mathfrak G}$; here $\widehat{\widehat{\mathfrak G}}=\mathfrak G$. By definition a ring group is determined by a $W^*$-algebra $\mathfrak A$ (the space of the ring group) equipped with an additional structure which allows $ \mathfrak A$ to be considered, in particular, as a Hopf–von Neumann algebra. When $\mathfrak G$ is a locally compact group, $\mathfrak A$ is the $W^*$-algebra of bounded measurable functions on $\mathfrak G$, considered in the natural way as operators in $L_2(\mathfrak G)$.
Bibliography: 15 titles.
			
            
            
            
          
        
      @article{SM_1974_23_2_a2,
     author = {L. I. Vainerman and G. I. Kats},
     title = {Nonunimodular ring groups and {Hopf--von~Neumann} algebras},
     journal = {Sbornik. Mathematics},
     pages = {185--214},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_23_2_a2/}
}
                      
                      
                    L. I. Vainerman; G. I. Kats. Nonunimodular ring groups and Hopf--von~Neumann algebras. Sbornik. Mathematics, Tome 23 (1974) no. 2, pp. 185-214. http://geodesic.mathdoc.fr/item/SM_1974_23_2_a2/
