An equation of convolution type on convex domains in~$\mathbf R^2$
Sbornik. Mathematics, Tome 23 (1974) no. 2, pp. 169-184
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $D$ be a convex domain in $\mathbf R^2$, and let $C^{(k)}(D)$, $k=(k_1,\,k_2)$, be the space of functions $f(x)$, continuous in $D$ together with their partial derivatives
$$
\frac{\partial^{n_1+n_2}}{\partial x_1^{n_1}\partial x_2^{n_2}}f,
$$
$n_1\leqslant k_1$, $n_2\leqslant k_2$. This space is provided with the natural topology of uniform convergence of functions and corresponding derivatives on compact subsets of $D$. Consider in $C^{(k)}(D)$ the homogeneous convolution equation $\mu*f=0$, where $\mu$ is a continuous linear functional on $C^{(k)}(D)$. It is proved that every solution of this equation from the space $C^{(k)}(D)$ can be approximated in the topology of $C^{(k)}(D)$ by a linear combination of exponential polynomials satisfying this equation.
Bibliography: 15 titles.
@article{SM_1974_23_2_a1,
author = {V. V. Napalkov},
title = {An equation of convolution type on convex domains in~$\mathbf R^2$},
journal = {Sbornik. Mathematics},
pages = {169--184},
publisher = {mathdoc},
volume = {23},
number = {2},
year = {1974},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1974_23_2_a1/}
}
V. V. Napalkov. An equation of convolution type on convex domains in~$\mathbf R^2$. Sbornik. Mathematics, Tome 23 (1974) no. 2, pp. 169-184. http://geodesic.mathdoc.fr/item/SM_1974_23_2_a1/