Generalized Lyapunov theorem on Mal'tsev manifolds
Sbornik. Mathematics, Tome 23 (1974) no. 2, pp. 155-168 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem is studied of the extendability of a homomorphism $\mu\colon\Gamma\to G$, where $\Gamma$ is a lattice in a simply-connected nilpotent Lie group $N$, and $G$ is a linear algebraic group, to a homomorphism $\widetilde\mu\colon N\to G$ such that $\widetilde\mu|_\Gamma=\mu$. The case $\Gamma=\mathbf Z^n$ is considered in detail. The results obtained are applied to the study of reducibility of completely integrable equations on $N/\Gamma$. Bibliography: 12 titles.
@article{SM_1974_23_2_a0,
     author = {V. V. Gorbatsevich},
     title = {Generalized {Lyapunov} theorem on {Mal'tsev} manifolds},
     journal = {Sbornik. Mathematics},
     pages = {155--168},
     year = {1974},
     volume = {23},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_23_2_a0/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - Generalized Lyapunov theorem on Mal'tsev manifolds
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 155
EP  - 168
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1974_23_2_a0/
LA  - en
ID  - SM_1974_23_2_a0
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T Generalized Lyapunov theorem on Mal'tsev manifolds
%J Sbornik. Mathematics
%D 1974
%P 155-168
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1974_23_2_a0/
%G en
%F SM_1974_23_2_a0
V. V. Gorbatsevich. Generalized Lyapunov theorem on Mal'tsev manifolds. Sbornik. Mathematics, Tome 23 (1974) no. 2, pp. 155-168. http://geodesic.mathdoc.fr/item/SM_1974_23_2_a0/

[1] A. Borel, J.-P. Serre, “Sur sertains sous-groupes des groupes de Lie compacts”, Comm. Math. Helv., 27 (1953), 128–139 | DOI | MR | Zbl

[2] A. Borel, “Sous-groupes commutatifs et torsion des groupes de Lie compacts connexes”, Tôhoku Math. J., 13:2 (1961), 216–240 | DOI | MR | Zbl

[3] E. B. Vinberg, A. L. Onischik, Seminar po algebraicheskim gruppam i gruppam Li, 1967–1968, MGU, Moskva, 1969

[4] R. Gerard, “Le théoréme de Floquet pour systemés de la forme $dX=\left(\sum P_k(t_1,t_2\dots,t_n)\right)dt_k\cdot X$”, Ann. Scuola Norm. Super. Pisa, ser. 3, 20:3 (1966), 537–541 | MR | Zbl

[5] V. V. Gorbatsevich, “Diskretnye podgruppy razreshimykh grupp Li tipa $(E)$”, Matem. sb., 85 (127) (1971), 238–255 | Zbl

[6] B. P. Demidovich, Lektsii po matematicheskoi teorii ustoichivosti, izd-vo «Nauka», Moskva, 1967 | MR

[7] F. Johnson, “Manifolds of homotopy type $K(\pi, 1)$”, Proc. Cambridge Phil. Soc., 70:3 (1971), 387–393 | DOI | MR | Zbl

[8] A. I. Maltsev, “Ob odnom klasse odnorodnykh prostranstv”, Izv. AN SSSR, seriya matem., 13 (1949), 9–32

[9] J. Milnor, “On Betti numbers of real varieties”, Proc. Amer. Math. Soc., 15:2 (1964), 275–280 | DOI | MR | Zbl

[10] A. L. Onischik, “Nekotorye ponyatiya i primenenie teorii neabelevykh kogomologii”, Trudy Mosk. matem. ob-va, XVII (1967), 45–88

[11] A. L. Onischik, “O vpolne integriruemykh uravneniyakh na odnorodnykh prostranstvakh”, Matem. zametki, 9:4 (1971), 365–373 | MR | Zbl

[12] D. A. Suprunenko, Razreshimye i nilpotentnye lineinye gruppy, izd-vo Belorussk. un-ta, Minsk, 1958 | MR