Generalized Lyapunov theorem on Mal'tsev manifolds
Sbornik. Mathematics, Tome 23 (1974) no. 2, pp. 155-168

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem is studied of the extendability of a homomorphism $\mu\colon\Gamma\to G$, where $\Gamma$ is a lattice in a simply-connected nilpotent Lie group $N$, and $G$ is a linear algebraic group, to a homomorphism $\widetilde\mu\colon N\to G$ such that $\widetilde\mu|_\Gamma=\mu$. The case $\Gamma=\mathbf Z^n$ is considered in detail. The results obtained are applied to the study of reducibility of completely integrable equations on $N/\Gamma$. Bibliography: 12 titles.
@article{SM_1974_23_2_a0,
     author = {V. V. Gorbatsevich},
     title = {Generalized {Lyapunov} theorem on {Mal'tsev} manifolds},
     journal = {Sbornik. Mathematics},
     pages = {155--168},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_23_2_a0/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - Generalized Lyapunov theorem on Mal'tsev manifolds
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 155
EP  - 168
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1974_23_2_a0/
LA  - en
ID  - SM_1974_23_2_a0
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T Generalized Lyapunov theorem on Mal'tsev manifolds
%J Sbornik. Mathematics
%D 1974
%P 155-168
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1974_23_2_a0/
%G en
%F SM_1974_23_2_a0
V. V. Gorbatsevich. Generalized Lyapunov theorem on Mal'tsev manifolds. Sbornik. Mathematics, Tome 23 (1974) no. 2, pp. 155-168. http://geodesic.mathdoc.fr/item/SM_1974_23_2_a0/