On a theorem of Saff
Sbornik. Mathematics, Tome 23 (1974) no. 1, pp. 149-154 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A theorem establishing a connection between the degree of best approximation by rational functions with a fixed number of free poles and the regions of meromorphy of a given function is proved. Bibliography: 3 titles.
@article{SM_1974_23_1_a7,
     author = {A. A. Gonchar},
     title = {On a~theorem of {Saff}},
     journal = {Sbornik. Mathematics},
     pages = {149--154},
     year = {1974},
     volume = {23},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_23_1_a7/}
}
TY  - JOUR
AU  - A. A. Gonchar
TI  - On a theorem of Saff
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 149
EP  - 154
VL  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1974_23_1_a7/
LA  - en
ID  - SM_1974_23_1_a7
ER  - 
%0 Journal Article
%A A. A. Gonchar
%T On a theorem of Saff
%J Sbornik. Mathematics
%D 1974
%P 149-154
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1974_23_1_a7/
%G en
%F SM_1974_23_1_a7
A. A. Gonchar. On a theorem of Saff. Sbornik. Mathematics, Tome 23 (1974) no. 1, pp. 149-154. http://geodesic.mathdoc.fr/item/SM_1974_23_1_a7/

[1] E. B. Saff, “Regions of meromorphy determined by the degree of best rational approximation”, Proc. Amer. Math. Soc., 29 (1971), 30–38 | DOI | MR | Zbl

[2] Dzh. L. Uolsh, Interpolyatsiya i approksimatsiya ratsionalnymi funktsiyami v kompleksnoi oblasti, IL, Moskva, 1961 | MR

[3] J. L. Walsh, “The convergence of approximating rational functions of prescribed type”, Sovremennye problemy teorii analiticheskikh funktsii, izd-vo «Nauka», Moskva, 1966, 304–308 | MR