On a point source in an inhomogeneous medium
Sbornik. Mathematics, Tome 23 (1974) no. 1, pp. 123-148 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $L\bigl(x,\frac\partial{\partial x}\bigr)$, $x\in\mathbf R^n$, be a second-order elliptic differential operator coinciding with the Laplace operator in a neighborhood of infinity. Let $E$ be the Green's function of the Cauchy problem for the operator $\frac{\partial^2}{\partial t^2}-L$. Under certain assumptions regarding the trajectories of the Hamiltonian system connected with the operator in question, the following results are obtained: 1) an asymptotic approximation with respect to smoothness $E_N$ to the function $E$ is constructed by Hadamard's method; 2) we show that the Fourier transformation of $E_N$ from $t$ to $k$ is an analytic function of $k$ in the complex plane with a cut along the negative part of the imaginary axis, and with $\lvert\operatorname{Im}k\rvert and $\lvert\operatorname{Re}k\rvert\to\infty$ it gives the asymptotic behavior of the fundamental solution of the operator $-L-k^2$; 3) the asymptotic behavior as $t\to\infty$ of the solutions of the nonstationary problem is obtained. Bibliography: 44 titles.
@article{SM_1974_23_1_a6,
     author = {B. R. Vainberg},
     title = {On a~point source in an inhomogeneous medium},
     journal = {Sbornik. Mathematics},
     pages = {123--148},
     year = {1974},
     volume = {23},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_23_1_a6/}
}
TY  - JOUR
AU  - B. R. Vainberg
TI  - On a point source in an inhomogeneous medium
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 123
EP  - 148
VL  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1974_23_1_a6/
LA  - en
ID  - SM_1974_23_1_a6
ER  - 
%0 Journal Article
%A B. R. Vainberg
%T On a point source in an inhomogeneous medium
%J Sbornik. Mathematics
%D 1974
%P 123-148
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1974_23_1_a6/
%G en
%F SM_1974_23_1_a6
B. R. Vainberg. On a point source in an inhomogeneous medium. Sbornik. Mathematics, Tome 23 (1974) no. 1, pp. 123-148. http://geodesic.mathdoc.fr/item/SM_1974_23_1_a6/

[1] B. R. Vainberg, “Ob analiticheskikh svoistvakh rezolventy dlya odnogo klassa puchkov operatorov”, Matem. sb., 77 (119) (1968), 259–296 | MR | Zbl

[2] J. B. Keller, G. S. Avila, “The high-frequency field of a point source in an inhomogeneous medium”, Comm. Pure Appl. Math., 16:4 (1963), 363–381 | DOI | MR | Zbl

[3] V. M. Babich, “O korotkovolnovoi asimptotike resheniya zadachi o tochechnom istochnike v neodnorodnoi srede”, ZhVM i MF, 5 (1965), 949–951 | MR | Zbl

[4] V. S. Buslaev, “Formuly sledov i nekotorye asimptoticheskie otsenki yadra rezolventy dlya operatora Shredingera v trekhmernom prostranstve”, Probl. matem. fiziki, no. 1, Leningrad, 1966, 82–101 | MR | Zbl

[5] V. V. Kucherenko, “Kvaziklassicheskaya asimptotika funktsii tochechnogo istochnika dlya statsionarnogo uravneniya Shredingera”, Teor. i matem. fizika, 1:3 (1969), 384–406 | MR

[6] F. Ursell, “On the short-wave asymptotic theory of the wave equation $(\nabla^2+k^2)\varphi=0$”, Proc. Cambridge Phil. Soc., 53:1 (1957), 115–133 | DOI | MR | Zbl

[7] V. M. Babich, “O korotkovolnovoi asimptotike funktsii Grina dlya uravneniya Gelmgoltsa”, Matem. sb., 65 (107) (1964), 576–630 | Zbl

[8] V. S. Buslaev, “Korotkovolnovaya asimptotika v zadache difraktsii na gladkikh vypuklykh konturakh”, Trudy matem. in-ta im. V. A. Steklova, 73 (1964), 14–117 | MR

[9] V. M. Babich, “Ob analiticheskom prodolzhenii rezolventy vneshnikh zadach dlya operatora Laplasa na vtoroi list”, Teoriya funktsii, funkts. analiz i ikh prilozh., no. 3, Izd. KhGU, 1966, 151–157 | MR

[10] V. A. Borovikov, Difraktsiya na mnogougolnikakh i mnogogrannikakh, izd-vo «Nauka», Moskva, 1966 | MR

[11] R. Grimshaw, “High-frequency scattering by finite convex regions”, Comm. Pure Appl. Math, 19:2 (1966), 167–198 | DOI | MR | Zbl

[12] D. Ludwig, “Uniform asymptotic expansion of the field scattered by a convex object at high frequencies”, Comm. Pure Appl. Math, 20:1 (1967), 103–138 | DOI | MR | Zbl

[13] C. S. Morawetz, D. Ludwig, “An inequality for reduced wave operator and the justification of geometrical optics”, Comm. Pure Appl. Math, 21:2 (1968), 187–203 | DOI | MR | Zbl

[14] A. F. Filippov, “Obosnovanie vysokochastotnoi asimptotiki v trekhmernoi difraktsionnoi zadache”, Sib. matem. zh., 10:6 (1969), 1406–1421 | Zbl

[15] L. A. Muravei, “Asimptoticheskoe povedenie reshenii vtoroi vneshnei kraevoi zadachi dlya dvumernogo volnovogo uravneniya”, Dif. uravneniya, 16:12 (1970), 2248–2262 | MR

[16] V. M. Babich, “Ob asimptotike funktsii Grina nekotorykh volnovykh zadach. I: Statsionarnyi sluchai”, Matem. sb., 86 (128) (1971), 518–539

[17] V. S. Buslaev, “Rasseyannye ploskie volny, spektralnye asimptotiki i formuly sleda vo vneshnikh zadachakh”, DAN SSSR, 197:5 (1971), 999–1002 | MR | Zbl

[18] V. S. Buslaev, “Teoriya potentsiala i geometricheskaya optika”, Zapiski nauchnykh seminarov LOMI, 22 (1971), 175–180 | MR | Zbl

[19] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, izd-vo «Nauka», Moskva, 1972 | MR

[20] V. M. Babich, “O strogom opravdanii korotkovolnovogo priblizheniya v trekhmernom sluchae”, Zapiski nauchnykh seminarov LOMI, 34 (1973), 23–51

[21] O. A. Ladyzhenskaya, “O printsipe predelnoi amplitudy”, Uspekhi matem. nauk, XII:3 (75) (1957), 161–164

[22] A. G. Ramm, “Ob oblasti, svobodnoi ot rezonansnykh polyusov v zadache rasseyaniya na trekhmernom potentsiale”, DAN SSSR, 166:6 (1966), 1319–1322 | MR

[23] C. L. Dolph, J. B. McLeod, D. Thoe, “The analytic continuation of the resolvent kernel and scattering operator associated with the Schroedinger operator”, J. Math. Analysis and Appl., 16 (1966), 311–332 | DOI | MR | Zbl

[24] D. Thoe, “On the exponential decay of solutions of the wave equation”, J. Math. Analysis and Appl., 16 (1966), 333–346 | DOI | MR | Zbl

[25] B. R. Vainberg, “Povedenie resheniya zadachi Koshi dlya giperbolicheskogo uravneniya pri $t\to\infty$”, Matem. sb., 78 (120) (1969), 542–578 | MR | Zbl

[26] B. R. Vainberg, “O vneshnikh ellipticheskikh zadachakh, polinomialno zavisyaschikh ot spektralnogo parametra, i asimptotike pri bolshikh vremenakh reshenii nestatsionarnykh zadach”, Matem. sb., 92 (134) (1973), 224–241 | MR | Zbl

[27] V. P. Mikhailov, “O printsipe predelnoi amplitudy”, DAN SSSR, 159:4 (1964), 750–752 | MR

[28] E. Ya. Khruslov, “Issledovanie predelnogo sluchaya pervoi kraevoi zadachi”, Teoriya funktsii, funkts. analiz i ikh prilozh., no. I, Izd. KhGU, 1965, 71–87

[29] V. M. Babich, N. S. Grigoreva, “Trekhmernyi analog metoda Vatsona, nespektralnye osobennosti funktsii Grina i asimptotika nestatsionarnykh zadach pri $t\to\infty$”, VI Vsesoyuznyi simpozium po difraktsii i rasprostraneniyu voln, Kratkie tezisy dokladov, II, M.–E., 1973

[30] A. A. Arsenev, “Ob osobennostyakh analiticheskogo prodolzheniya i rezonansnykh svoistvakh resheniya zadachi rasseyaniya dlya uravneniya Gelmgoltsa”, DAN SSSR, 197:3 (1971), 511–512 | MR

[31] P. D. Lax, R. S. Phillips, “A logarithmic bound on the location of the poles of the scattering matrix”, Arch. Rath. Mech. and Anal., 40:4 (1971), 268–280 | MR | Zbl

[32] P. D. Lax, R. S. Phillips, “On the scattering frequencies of the Laplace operator for exterior domain”, Comm. Pure Appl. Math., 25:1 (1972), 85–102 | DOI | MR

[33] C. S. Morawetz, “On the modes of decay for the wave equation in the exterior of a reflecting body”, Proc. Royal Irish Acad., sec. A, 72:9 (1972), 113–120 | MR | Zbl

[34] J. V. Ralston, “Variation of the transmission coefficient and comparison theorems for the scattering matrix”, Comm. Pure Appl. Math., 25:1 (1972), 45–61 | DOI | MR | Zbl

[35] V. M. Babich, “Ob asimptotike funktsii Grina nekotorykh volnovykh zadach. II: Nestatsionarnyi sluchai”, Matem. sb., 87 (129) (1972), 44–57 | Zbl

[36] P. Laks, R. Filipps, Teoriya rasseyaniya, izd-vo «Mir», Moskva, 1971 | MR

[37] B. R. Vainberg, “Povedenie pri bolshikh vremenakh reshenii uravneniya Kleina-Gordona”, Trudy mosk. matem. ob-va, XXX (1974), 139–158

[38] R. Kurant, Uravneniya s chastnymi proizvodnymi, izd-vo «Mir», Moskva, 1964 | MR

[39] B. R. Vainberg, “K zadache o tochechnom istochnike v neodnorodnoi srede”, Vestnik MGU, 1 (1974), 28–36 | MR | Zbl

[40] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, Moskva, 1958

[41] L. Gording, Zadacha Koshi dlya giperbolicheskikh uravnenii, IL, Moskva, 1961

[42] S. Agmon, A. Duglis, L. Nirenberg, Otsenki reshenii ellipticheskikh uravnenii vblizi granitsy, IL, Moskva, 1962

[43] M. S. Agranovich, “Ellipticheskie singulyarnye integro-differentsialnye operatory”, Uspekhi matem. nauk, XX:5 (125) (1965), 3–120

[44] L. Khërmander, Lineinye differentsialnye operatory s chastnymi proizvodnymi, izd-vo «Mir», Moskva, 1965 | MR