The commutation formula for an $h^{-1}$-pseudodifferential operator with a rapidly oscillating exponential function in the complex phase case
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 23 (1974) no. 1, pp. 85-109
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper considers the action of the operator $a\bigl(x_1-ih\frac\partial{\partial x}\bigr)u\overset{\mathrm{def}}=\int a(x,h\xi)\times\exp i(x\xi)\widetilde u(\xi)\,d\xi$ on functions of the form $\exp(\frac{iS}h)\varphi(x)=u(x)$, where $\varphi\in C_0^\infty(\mathbf R^n)$ and $S\in C^\infty(\mathbf R^n)$. In particular, when $ S(x,h)=S(x)$, $\operatorname{im}S(x)\geqslant0$, one has
$$
a\biggl(x_1-ih\frac\partial{\partial x}\biggr)\exp\biggl(-\frac{iS}h\biggr)\varphi=\exp\biggl(\frac{iS}h\biggr)\sum_{j=0}^N h^jL_j\varphi+O(h^{N+1}).
$$
It is proved that for $\operatorname{im}S\not\equiv0$ the differential operators $L_j$ can be obtained from the analogous differential operators for $\operatorname{im}S\equiv0$ by means of “almost analytic extension” with respect to the arguments $S',S'',\dots,S^{(k)}$.
Bibliography: 12 titles.
			
            
            
            
          
        
      @article{SM_1974_23_1_a4,
     author = {V. V. Kucherenko},
     title = {The commutation formula for an $h^{-1}$-pseudodifferential operator with a rapidly oscillating exponential function in the complex phase case},
     journal = {Sbornik. Mathematics},
     pages = {85--109},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_23_1_a4/}
}
                      
                      
                    TY  - JOUR
AU  - V. V. Kucherenko
TI  - The commutation formula for an $h^{-1}$-pseudodifferential operator with a rapidly oscillating exponential function in the complex phase case
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 85
EP  - 109
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1974_23_1_a4/
LA  - en
ID  - SM_1974_23_1_a4
ER  - 
                      
                      
                    %0 Journal Article
%A V. V. Kucherenko
%T The commutation formula for an $h^{-1}$-pseudodifferential operator with a rapidly oscillating exponential function in the complex phase case
%J Sbornik. Mathematics
%D 1974
%P 85-109
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1974_23_1_a4/
%G en
%F SM_1974_23_1_a4
                      
                      
                    V. V. Kucherenko. The commutation formula for an $h^{-1}$-pseudodifferential operator with a rapidly oscillating exponential function in the complex phase case. Sbornik. Mathematics, Tome 23 (1974) no. 1, pp. 85-109. http://geodesic.mathdoc.fr/item/SM_1974_23_1_a4/
                  
                