Proof of convergence in the problem of rectification
Sbornik. Mathematics, Tome 23 (1974) no. 1, pp. 69-83

Voir la notice de l'article provenant de la source Math-Net.Ru

The behavior of the vertices $A_1(t),\dots,A_n(t)$ of a polygonal line $\mathbf A(t)$ situated in $k$-dimensional Euclidean space is considered as $t\to\infty$ (each point $A_i(t\pm1)$, $1$, is a linear combination of the points $A_{i-1}(t)$, $A_i(t)$ and $A_{i+1}(t)$; the points $A_1(t+1)$ and $A_n(t+1)$ are linear combinations of $A_1(t)$ and $A_2(t)$, and $A_{n-1}(t)$ and $A_n(t)$, respectively). It is proved that for any initial position $\mathbf A(0)$ the polygonal lines $\mathbf A(t)$ converge to one of two possible limits, namely a stationary or quasistationary polygonal line. Figures: 1. Bibliography: 2 titles.
@article{SM_1974_23_1_a3,
     author = {G. A. Gal'perin},
     title = {Proof of convergence in the problem of rectification},
     journal = {Sbornik. Mathematics},
     pages = {69--83},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_23_1_a3/}
}
TY  - JOUR
AU  - G. A. Gal'perin
TI  - Proof of convergence in the problem of rectification
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 69
EP  - 83
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1974_23_1_a3/
LA  - en
ID  - SM_1974_23_1_a3
ER  - 
%0 Journal Article
%A G. A. Gal'perin
%T Proof of convergence in the problem of rectification
%J Sbornik. Mathematics
%D 1974
%P 69-83
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1974_23_1_a3/
%G en
%F SM_1974_23_1_a3
G. A. Gal'perin. Proof of convergence in the problem of rectification. Sbornik. Mathematics, Tome 23 (1974) no. 1, pp. 69-83. http://geodesic.mathdoc.fr/item/SM_1974_23_1_a3/