On projective modules over polynomial rings
Sbornik. Mathematics, Tome 22 (1974) no. 4, pp. 595-602
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove that every projective module of rank greater than $\frac{n+1}2$ over the ring $k[X_1,\dots,X_n]$ is free if $k$ is an infinite field. Bibliography: 5 titles.
@article{SM_1974_22_4_a8,
author = {A. A. Suslin},
title = {On projective modules over polynomial rings},
journal = {Sbornik. Mathematics},
pages = {595--602},
year = {1974},
volume = {22},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1974_22_4_a8/}
}
A. A. Suslin. On projective modules over polynomial rings. Sbornik. Mathematics, Tome 22 (1974) no. 4, pp. 595-602. http://geodesic.mathdoc.fr/item/SM_1974_22_4_a8/
[1] H. Bass, “$K$-theory and stable algebra”, Publ. IHES., 1964, no. 22, 5–60 | MR | Zbl
[2] Zarisskii Samyuel, Kommutativnaya algebra, t. II, IL, Moskva, 1963
[3] J. P. Serre, “Modules projectifs et espaces fiblè a fibre vectorielle”, Sem. Dubreil, no. 23, 1957–1958
[4] J. P. Serre, “Faisceaux algebrique coherents”, Ann. Math., 61 (1955), 197–278 ; Rassloennye prostranstva i ikh prilozheniya, IL, Moskva, 1958 | DOI | MR | Zbl
[5] I. R. Shafarevich, Osnovy algebraicheskoi geometrii, izd-vo «Nauka», Moskva, 1972 | MR