On projective modules over polynomial rings
Sbornik. Mathematics, Tome 22 (1974) no. 4, pp. 595-602 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that every projective module of rank greater than $\frac{n+1}2$ over the ring $k[X_1,\dots,X_n]$ is free if $k$ is an infinite field. Bibliography: 5 titles.
@article{SM_1974_22_4_a8,
     author = {A. A. Suslin},
     title = {On projective modules over polynomial rings},
     journal = {Sbornik. Mathematics},
     pages = {595--602},
     year = {1974},
     volume = {22},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_22_4_a8/}
}
TY  - JOUR
AU  - A. A. Suslin
TI  - On projective modules over polynomial rings
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 595
EP  - 602
VL  - 22
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1974_22_4_a8/
LA  - en
ID  - SM_1974_22_4_a8
ER  - 
%0 Journal Article
%A A. A. Suslin
%T On projective modules over polynomial rings
%J Sbornik. Mathematics
%D 1974
%P 595-602
%V 22
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1974_22_4_a8/
%G en
%F SM_1974_22_4_a8
A. A. Suslin. On projective modules over polynomial rings. Sbornik. Mathematics, Tome 22 (1974) no. 4, pp. 595-602. http://geodesic.mathdoc.fr/item/SM_1974_22_4_a8/

[1] H. Bass, “$K$-theory and stable algebra”, Publ. IHES., 1964, no. 22, 5–60 | MR | Zbl

[2] Zarisskii Samyuel, Kommutativnaya algebra, t. II, IL, Moskva, 1963

[3] J. P. Serre, “Modules projectifs et espaces fiblè a fibre vectorielle”, Sem. Dubreil, no. 23, 1957–1958

[4] J. P. Serre, “Faisceaux algebrique coherents”, Ann. Math., 61 (1955), 197–278 ; Rassloennye prostranstva i ikh prilozheniya, IL, Moskva, 1958 | DOI | MR | Zbl

[5] I. R. Shafarevich, Osnovy algebraicheskoi geometrii, izd-vo «Nauka», Moskva, 1972 | MR