On projective modules over polynomial rings
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 22 (1974) no. 4, pp. 595-602
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove that every projective module of rank greater than $\frac{n+1}2$ over the ring $k[X_1,\dots,X_n]$ is free if $k$ is an infinite field.
Bibliography: 5 titles.
			
            
            
            
          
        
      @article{SM_1974_22_4_a8,
     author = {A. A. Suslin},
     title = {On projective modules over polynomial rings},
     journal = {Sbornik. Mathematics},
     pages = {595--602},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_22_4_a8/}
}
                      
                      
                    A. A. Suslin. On projective modules over polynomial rings. Sbornik. Mathematics, Tome 22 (1974) no. 4, pp. 595-602. http://geodesic.mathdoc.fr/item/SM_1974_22_4_a8/
