On projective modules over polynomial rings
Sbornik. Mathematics, Tome 22 (1974) no. 4, pp. 595-602

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that every projective module of rank greater than $\frac{n+1}2$ over the ring $k[X_1,\dots,X_n]$ is free if $k$ is an infinite field. Bibliography: 5 titles.
@article{SM_1974_22_4_a8,
     author = {A. A. Suslin},
     title = {On projective modules over polynomial rings},
     journal = {Sbornik. Mathematics},
     pages = {595--602},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_22_4_a8/}
}
TY  - JOUR
AU  - A. A. Suslin
TI  - On projective modules over polynomial rings
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 595
EP  - 602
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1974_22_4_a8/
LA  - en
ID  - SM_1974_22_4_a8
ER  - 
%0 Journal Article
%A A. A. Suslin
%T On projective modules over polynomial rings
%J Sbornik. Mathematics
%D 1974
%P 595-602
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1974_22_4_a8/
%G en
%F SM_1974_22_4_a8
A. A. Suslin. On projective modules over polynomial rings. Sbornik. Mathematics, Tome 22 (1974) no. 4, pp. 595-602. http://geodesic.mathdoc.fr/item/SM_1974_22_4_a8/