On automorphisms of finite groups
Sbornik. Mathematics, Tome 22 (1974) no. 4, pp. 584-594

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider orbits of elements of a finite group $G$ with respect to the action on $G$ of a cyclic automorphism group generated by $\varphi$. We obtain sufficient conditions for the existence of an orbit whose length is equal to the order of the automorphism $\varphi$. Namely, such an orbit exists for any automorphism $\varphi$ of a semisimple or nilpotent finite group $G$ and for an automorphism $\varphi$ of an arbitrary finite group $G$ when the orders of $\varphi$ and $G$ are relatively prime. In the general case, the question of the existence of such an orbit for an automorphism of a finite group is answered negatively; a series of counterexamples is constructed. Nevertheless, the order of an automorphism $\varphi$ of a finite group $G$ is in all cases bounded by the order of $G$. Bibliography: 1 title.
@article{SM_1974_22_4_a7,
     author = {M. V. Khoroshevskii},
     title = {On automorphisms of finite groups},
     journal = {Sbornik. Mathematics},
     pages = {584--594},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_22_4_a7/}
}
TY  - JOUR
AU  - M. V. Khoroshevskii
TI  - On automorphisms of finite groups
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 584
EP  - 594
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1974_22_4_a7/
LA  - en
ID  - SM_1974_22_4_a7
ER  - 
%0 Journal Article
%A M. V. Khoroshevskii
%T On automorphisms of finite groups
%J Sbornik. Mathematics
%D 1974
%P 584-594
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1974_22_4_a7/
%G en
%F SM_1974_22_4_a7
M. V. Khoroshevskii. On automorphisms of finite groups. Sbornik. Mathematics, Tome 22 (1974) no. 4, pp. 584-594. http://geodesic.mathdoc.fr/item/SM_1974_22_4_a7/