Schreier varieties of linear $\Omega$-algebras
Sbornik. Mathematics, Tome 22 (1974) no. 4, pp. 561-579 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A variety of universal algebras is called a Schreier variety if every subalgebra of any free algebra in that variety is also free in that variety. This paper gives a description of the Schreier varieties of linear $\Omega$-algebras over an associative commutative ring, defined by systems of homogeneous identities. As a corollary to these results one obtains a description of all Schreier varieties of linear $\Omega$-algebras over an infinite field (in particular, over a field of characteristic zero). These algebras include, in particular, nonassociative algebras. Bibliography: 25 titles.
@article{SM_1974_22_4_a5,
     author = {M. S. Burgin},
     title = {Schreier varieties of linear $\Omega$-algebras},
     journal = {Sbornik. Mathematics},
     pages = {561--579},
     year = {1974},
     volume = {22},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_22_4_a5/}
}
TY  - JOUR
AU  - M. S. Burgin
TI  - Schreier varieties of linear $\Omega$-algebras
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 561
EP  - 579
VL  - 22
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1974_22_4_a5/
LA  - en
ID  - SM_1974_22_4_a5
ER  - 
%0 Journal Article
%A M. S. Burgin
%T Schreier varieties of linear $\Omega$-algebras
%J Sbornik. Mathematics
%D 1974
%P 561-579
%V 22
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1974_22_4_a5/
%G en
%F SM_1974_22_4_a5
M. S. Burgin. Schreier varieties of linear $\Omega$-algebras. Sbornik. Mathematics, Tome 22 (1974) no. 4, pp. 561-579. http://geodesic.mathdoc.fr/item/SM_1974_22_4_a5/

[1] O. Schreier, “Die Untergruppen der freien Gruppen”, Hamburg. Abh., 5 (1927), 161–183 | DOI | Zbl

[2] C. J. Everett, “The basis theorem for vector spaces over rings”, Bull. Amer. Math. Soc., 51 (1945), 531–532 | DOI | MR | Zbl

[3] P. M. Neumann, J. Wiegold, “Schreier varieties of groups”, Math. Z., 85 (1965), 392–400 | DOI | MR

[4] Dnestrovskaya tetrad, Kishinev, 1969

[5] A. G. Kurosh, “Neassotsiativnye svobodnye algebry i svobodnye proizvedeniya algebr”, Matem. sb., 20 (62) (1947), 239–262 | MR | Zbl

[6] A. I. Shirshov, “Podalgebry svobodnykh kommutativnykh i svobodnykh antikommutativnykh algebr”, Matem. sb., 34 (76) (1954), 81–88 | Zbl

[7] A. I. Shirshov, “Podalgebry svobodnykh lievykh algebr”, Matem. sb., 33 (75) (1953), 441–452 | Zbl

[8] E. Witt, “Die Unterringe der freien Lieschen Ringe”, Math. Z., 64 (1956), 195–216 | DOI | MR | Zbl

[9] E. Witt, “Über freie Ringe und ihre Unterringe”, Math. Z., 58 (1953), 113–114 | DOI | MR | Zbl

[10] A. G. Kurosh, “Neassotsiativnye svobodnye summy algebr”, Matem. sb., 37 (79) (1955), 251–264 | Zbl

[11] A. G. Kurosh, “Multioperatornye koltsa i algebry”, Uspekhi matem. nauk, XXIV:1 (145) (1969), 3–15

[12] A. G. Kurosh, “Svobodnye summy multioperatornykh algebr”, Sib. matem. zh., 1 (1960), 62–70 | Zbl

[13] S. V. Polin, “Podalgebry svobodnykh algebr nekotorykh mnogoobrazii multioperatornykh algebr”, Uspekhi matem. nauk, XXIV:1(145) (1969), 17–26 | MR | Zbl

[14] M. S. Burgin, “Lineinye $\Omega$-algebry s tozhdestvami nulevogo poryadka”, XI Vsesoyuznyi algebraicheskii kollokvium, Kishinev, 1971, 243–244

[15] M. S. Burgin, “Svobodnye faktor-algebry svobodnykh lineinykh $\Omega$-algebr”, Matem. zametki, 11:5 (1972), 537–544 | MR | Zbl

[16] V. A. Artamonov, M. S. Burgin, “Nekotorye svoistva podalgebr v mnogoobraziyakh lineinykh $\Omega$-algebr”, Matem. sb., 87 (129) (1972), 67–82 | MR | Zbl

[17] J. Lewin, “On schreier varieties of linear algebras”, Trans. Amer. Math. Soc., 132 (1968), 553–562 | DOI | MR | Zbl

[18] Yu. A. Bakhturin, “Dva zamechaniya o mnogoobraziyakh algebr Li”, Matem. zametki, 4:4 (1968), 387–398 | Zbl

[19] M. S. Burgin, “Shreierovy mnogoobraziya lineinykh $\Omega$-algebr”, Uspekhi matem. nauk, XXVII:5 (167) (1972), 227–228 | MR

[20] A. Blokh, “Ob odnom obobschenii ponyatiya algebry Li”, DAN SSSR, 165:3 (1965), 471–473 | Zbl

[21] A. Blokh, “Teoriya gomologii Kartana - Eilenberga dlya odnogo obobscheniya klassa algebr Li”, DAN SSSR, 175:2 (1967), 266–268 | Zbl

[22] M. S. Burgin, “Lineinye $\Omega$-algebry nad kommutativnymi koltsami i dostizhimye mnogoobraziya”, Vestnik MGU, 1972, no. 2, 56–63 | MR | Zbl

[23] P. Kon, Universalnaya algebra, izd-vo «Mir», Moskva, 1968 | MR

[24] Kh. Neiman, Mnogoobraziya grupp, izd-vo «Mir», Moskva, 1969 | MR

[25] M. S. Burgin, “Teorema o svobode v nekotorykh mnogoobraziyakh lineinykh $\Omega$-algebr i $\Omega$-kolets”, Uspekhi matem. nauk, XXIV:1 (145) (1969), 27–38 | MR