Schreier varieties of linear $\Omega$-algebras
Sbornik. Mathematics, Tome 22 (1974) no. 4, pp. 561-579

Voir la notice de l'article provenant de la source Math-Net.Ru

A variety of universal algebras is called a Schreier variety if every subalgebra of any free algebra in that variety is also free in that variety. This paper gives a description of the Schreier varieties of linear $\Omega$-algebras over an associative commutative ring, defined by systems of homogeneous identities. As a corollary to these results one obtains a description of all Schreier varieties of linear $\Omega$-algebras over an infinite field (in particular, over a field of characteristic zero). These algebras include, in particular, nonassociative algebras. Bibliography: 25 titles.
@article{SM_1974_22_4_a5,
     author = {M. S. Burgin},
     title = {Schreier varieties of linear $\Omega$-algebras},
     journal = {Sbornik. Mathematics},
     pages = {561--579},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_22_4_a5/}
}
TY  - JOUR
AU  - M. S. Burgin
TI  - Schreier varieties of linear $\Omega$-algebras
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 561
EP  - 579
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1974_22_4_a5/
LA  - en
ID  - SM_1974_22_4_a5
ER  - 
%0 Journal Article
%A M. S. Burgin
%T Schreier varieties of linear $\Omega$-algebras
%J Sbornik. Mathematics
%D 1974
%P 561-579
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1974_22_4_a5/
%G en
%F SM_1974_22_4_a5
M. S. Burgin. Schreier varieties of linear $\Omega$-algebras. Sbornik. Mathematics, Tome 22 (1974) no. 4, pp. 561-579. http://geodesic.mathdoc.fr/item/SM_1974_22_4_a5/