Schreier varieties of linear $\Omega$-algebras
Sbornik. Mathematics, Tome 22 (1974) no. 4, pp. 561-579
Voir la notice de l'article provenant de la source Math-Net.Ru
A variety of universal algebras is called a Schreier variety if every subalgebra of any free algebra in that variety is also free in that variety. This paper gives a description of the Schreier varieties of linear $\Omega$-algebras over an associative commutative ring, defined by systems of homogeneous identities. As a corollary to these results one obtains a description of all Schreier varieties of linear $\Omega$-algebras over an infinite field (in particular, over a field of characteristic zero). These algebras include, in particular, nonassociative algebras.
Bibliography: 25 titles.
@article{SM_1974_22_4_a5,
author = {M. S. Burgin},
title = {Schreier varieties of linear $\Omega$-algebras},
journal = {Sbornik. Mathematics},
pages = {561--579},
publisher = {mathdoc},
volume = {22},
number = {4},
year = {1974},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1974_22_4_a5/}
}
M. S. Burgin. Schreier varieties of linear $\Omega$-algebras. Sbornik. Mathematics, Tome 22 (1974) no. 4, pp. 561-579. http://geodesic.mathdoc.fr/item/SM_1974_22_4_a5/