On centralizers of involutions in simple groups
Sbornik. Mathematics, Tome 22 (1974) no. 4, pp. 535-546
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we prove the following
Theorem. Let $G$ be a inite simple group$,$ $t$ an involution of $G$ and $C(t)$ the centralizer of $t$ in $G$. If $L(C(t))\simeq\langle t\rangle\times PSL(2,q)$ where $q3,$ then a Sylow $2$-subgroup of $G$ is an elementary group of order $8$.
Bibliography: 14 titles.
@article{SM_1974_22_4_a3,
author = {V. D. Mazurov},
title = {On centralizers of involutions in simple groups},
journal = {Sbornik. Mathematics},
pages = {535--546},
publisher = {mathdoc},
volume = {22},
number = {4},
year = {1974},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1974_22_4_a3/}
}
V. D. Mazurov. On centralizers of involutions in simple groups. Sbornik. Mathematics, Tome 22 (1974) no. 4, pp. 535-546. http://geodesic.mathdoc.fr/item/SM_1974_22_4_a3/