On centralizers of involutions in simple groups
Sbornik. Mathematics, Tome 22 (1974) no. 4, pp. 535-546

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove the following Theorem. Let $G$ be a inite simple group$,$ $t$ an involution of $G$ and $C(t)$ the centralizer of $t$ in $G$. If $L(C(t))\simeq\langle t\rangle\times PSL(2,q)$ where $q3,$ then a Sylow $2$-subgroup of $G$ is an elementary group of order $8$. Bibliography: 14 titles.
@article{SM_1974_22_4_a3,
     author = {V. D. Mazurov},
     title = {On centralizers of involutions in simple groups},
     journal = {Sbornik. Mathematics},
     pages = {535--546},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_22_4_a3/}
}
TY  - JOUR
AU  - V. D. Mazurov
TI  - On centralizers of involutions in simple groups
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 535
EP  - 546
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1974_22_4_a3/
LA  - en
ID  - SM_1974_22_4_a3
ER  - 
%0 Journal Article
%A V. D. Mazurov
%T On centralizers of involutions in simple groups
%J Sbornik. Mathematics
%D 1974
%P 535-546
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1974_22_4_a3/
%G en
%F SM_1974_22_4_a3
V. D. Mazurov. On centralizers of involutions in simple groups. Sbornik. Mathematics, Tome 22 (1974) no. 4, pp. 535-546. http://geodesic.mathdoc.fr/item/SM_1974_22_4_a3/