On centralizers of involutions in simple groups
Sbornik. Mathematics, Tome 22 (1974) no. 4, pp. 535-546 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we prove the following Theorem. Let $G$ be a inite simple group$,$ $t$ an involution of $G$ and $C(t)$ the centralizer of $t$ in $G$. If $L(C(t))\simeq\langle t\rangle\times PSL(2,q)$ where $q<3,$ then a Sylow $2$-subgroup of $G$ is an elementary group of order $8$. Bibliography: 14 titles.
@article{SM_1974_22_4_a3,
     author = {V. D. Mazurov},
     title = {On centralizers of involutions in simple groups},
     journal = {Sbornik. Mathematics},
     pages = {535--546},
     year = {1974},
     volume = {22},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_22_4_a3/}
}
TY  - JOUR
AU  - V. D. Mazurov
TI  - On centralizers of involutions in simple groups
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 535
EP  - 546
VL  - 22
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1974_22_4_a3/
LA  - en
ID  - SM_1974_22_4_a3
ER  - 
%0 Journal Article
%A V. D. Mazurov
%T On centralizers of involutions in simple groups
%J Sbornik. Mathematics
%D 1974
%P 535-546
%V 22
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1974_22_4_a3/
%G en
%F SM_1974_22_4_a3
V. D. Mazurov. On centralizers of involutions in simple groups. Sbornik. Mathematics, Tome 22 (1974) no. 4, pp. 535-546. http://geodesic.mathdoc.fr/item/SM_1974_22_4_a3/

[1] H. Bender, “Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festlässt”, J. Algebra, 17:4 (1971), 527–554 | DOI | MR | Zbl

[2] R. Brauer, P. Fong, “A characterization of the Mathieu group $\mathfrak{M}_{12}$”, Trans. Amer. Math. Soc., 122:1 (1966), 18–47 | DOI | MR | Zbl

[3] P. Chabot, “Groups whose Sylow 2-groups have cyclic commutator groups, II”, J. Algebra, 21:2 (1972), 312–320 | DOI | MR | Zbl

[4] W. Feit, Characters of finite groups, New York, 1967 | MR

[5] W. Feit, J. G. Thompson, “Solvability of groups of odd order”, Pacific J. Math., 13:4 (1963), 775–1029 | MR | Zbl

[6] D. Gorenstein, Finite groups, New York, 1967 | MR

[7] D. Gorenstein, K. Harada, “A characterization of Janko's two new simple groups”, J. Fac. Sci. Univ. Tokyo, Sec. 1, 16:3 (1970), 331–406 | MR | Zbl

[8] D. Gorenstein, K. Harada, “Finite simple groups of low 2-rank and the families $G_2(q)$, $D_4^2(q)$, $q$ odd”, Bull. Amer. Math. Soc., 77:6 (1971), 829–862 | DOI | MR | Zbl

[9] D. Gorenstein, K. Harada, “On finite groups with Sylow 2-subgroups of type $A_n$, $n=8$, 9, 10, 11”, Math. Z., 117:1–4 (1970), 207–238 | DOI | MR | Zbl

[10] D. Gorenstein, K. Harada, “On finite groups with Sylow 2-subgroups of type $\hat{A}_n$, $n=8$, 9, 10, 11”, J. Algebra, 19:2 (1971), 185–277 | DOI | MR

[11] K. Harada, “Groups with a certain type of Sylow 2-subgroups”, J. Math. Soc. Japan, 19:3 (1967), 303–307 | MR | Zbl

[12] K. Harada, “On some 2-groups of normal 2-rank 2”, J. Algebra, 20:1 (1972), 90–93 | DOI | MR | Zbl

[13] A. Mac-Williams, “On 2-groups with no normal abelian subgroups of rank 3, and their occurence as Sylow 2-subgroups of finite simple groups”, Trans. Amer. Math. Soc., 150:2 (1970), 345–408 | DOI | MR

[14] J. Walter, “The characterization of finite groups with abelian Sylow 2-subgroups”, Ann. Math., 89:3 (1969), 405–514 | DOI | MR | Zbl