On rational approximations of functions with a convex derivative
Sbornik. Mathematics, Tome 22 (1974) no. 4, pp. 619-629 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $R_N[f]$ be the least uniform deviation of a continuous function $f(x)$ ($x\in[a,b]$) from the rational functions of degree not greater than $N$ ($N=2,3,\dots$). Theorem. \textit{Suppose a function $f(x)$ is given on an interval $[a,b]$ $(-\infty and is $p$ times differentiable $(p\geqslant1)$, its $p$th derivative being convex. Then \begin{equation} R_N[f]\leqslant C_p(b-a)^pM_p\frac{\ln^3N}{N^{p+2}},\qquad N\geqslant2p, \end{equation} where $C_p$ is a constant depending on $p$ and $M_p=\max\{|f^{(p)}(x)|\}$.} The estimate is sharp for any $p=1,2,\dots$ and any modulus of continuity of the function $f^{(p)}$ if the factors of form $\ln^\gamma N$ are neglected. Bibliography: 7 titles.
@article{SM_1974_22_4_a10,
     author = {A. A. Abdugapparov},
     title = {On rational approximations of functions with a~convex derivative},
     journal = {Sbornik. Mathematics},
     pages = {619--629},
     year = {1974},
     volume = {22},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_22_4_a10/}
}
TY  - JOUR
AU  - A. A. Abdugapparov
TI  - On rational approximations of functions with a convex derivative
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 619
EP  - 629
VL  - 22
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1974_22_4_a10/
LA  - en
ID  - SM_1974_22_4_a10
ER  - 
%0 Journal Article
%A A. A. Abdugapparov
%T On rational approximations of functions with a convex derivative
%J Sbornik. Mathematics
%D 1974
%P 619-629
%V 22
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1974_22_4_a10/
%G en
%F SM_1974_22_4_a10
A. A. Abdugapparov. On rational approximations of functions with a convex derivative. Sbornik. Mathematics, Tome 22 (1974) no. 4, pp. 619-629. http://geodesic.mathdoc.fr/item/SM_1974_22_4_a10/

[1] G. Freud, “Über die approximation reeller functionen durch rationale gedrochene functionen”, Acta Math. Acad. Sci. Hungar., 17:3–4 (1966), 313–314 | DOI | MR

[2] P. Szüsz, P. Turan, “On the constructive theory of functions, I”, MTA, Mat. kut. Int. Közl., 1965, 495–502 | MR

[3] A. P. Bulanov, “O poryadke priblizheniya vypuklykh funktsii ratsionalnymi funktsiyami”, Izv. AN SSSR, seriya matem., 33 (1969), 1132–1148 | MR | Zbl

[4] A. P. Bulanov, “Ratsionalnye priblizheniya vypuklykh funktsii s zadannym modulem nepreryvnosti”, Matem. sb., 84 (126) (1971), 476–494 | MR | Zbl

[5] I. P. Natanson, Konstruktivnaya teoriya funktsii, Moskva–Leningrad, 1949 | MR | Zbl

[6] D. J. Hewman, “Rational approximation to $|x|$”, Mich. Math. J., 11:1 (1964), 11–14 | DOI | MR

[7] E. P. Dolzhenko, “Sravnenie skorostei ratsionalnoi i polinomialnoi approksimatsii”, Matem. zametki, 1:3 (1967), 313–314