On rational approximations of functions with a~convex derivative
Sbornik. Mathematics, Tome 22 (1974) no. 4, pp. 619-629

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R_N[f]$ be the least uniform deviation of a continuous function $f(x)$ ($x\in[a,b]$) from the rational functions of degree not greater than $N$ ($N=2,3,\dots$). Theorem. \textit{Suppose a function $f(x)$ is given on an interval $[a,b]$ $(-\infty$ and is $p$ times differentiable $(p\geqslant1)$, its $p$th derivative being convex. Then \begin{equation} R_N[f]\leqslant C_p(b-a)^pM_p\frac{\ln^3N}{N^{p+2}},\qquad N\geqslant2p, \end{equation} where $C_p$ is a constant depending on $p$ and $M_p=\max\{|f^{(p)}(x)|\}$.} The estimate is sharp for any $p=1,2,\dots$ and any modulus of continuity of the function $f^{(p)}$ if the factors of form $\ln^\gamma N$ are neglected. Bibliography: 7 titles.
@article{SM_1974_22_4_a10,
     author = {A. A. Abdugapparov},
     title = {On rational approximations of functions with a~convex derivative},
     journal = {Sbornik. Mathematics},
     pages = {619--629},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_22_4_a10/}
}
TY  - JOUR
AU  - A. A. Abdugapparov
TI  - On rational approximations of functions with a~convex derivative
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 619
EP  - 629
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1974_22_4_a10/
LA  - en
ID  - SM_1974_22_4_a10
ER  - 
%0 Journal Article
%A A. A. Abdugapparov
%T On rational approximations of functions with a~convex derivative
%J Sbornik. Mathematics
%D 1974
%P 619-629
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1974_22_4_a10/
%G en
%F SM_1974_22_4_a10
A. A. Abdugapparov. On rational approximations of functions with a~convex derivative. Sbornik. Mathematics, Tome 22 (1974) no. 4, pp. 619-629. http://geodesic.mathdoc.fr/item/SM_1974_22_4_a10/