Application of Cesàro summability methods of negative order to trigonometric Fourier series of summable and square summable functions
Sbornik. Mathematics, Tome 22 (1974) no. 4, pp. 497-515 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A Fourier series of a summable function is defined in the paper for which any sequence of Cesàro means of order $\alpha$ satisfying the inequality $-1<\alpha<0$ diverges on a set of positive measure. A Fourier series of a square summable function is also defined that has the same property for $\alpha$ satisfying the inequality $-1<\alpha<-\frac12$. Bibliography: 4 titles.
@article{SM_1974_22_4_a1,
     author = {D. E. Men'shov},
     title = {Application of {Ces\`aro} summability methods of negative order to trigonometric {Fourier} series of summable and square summable functions},
     journal = {Sbornik. Mathematics},
     pages = {497--515},
     year = {1974},
     volume = {22},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_22_4_a1/}
}
TY  - JOUR
AU  - D. E. Men'shov
TI  - Application of Cesàro summability methods of negative order to trigonometric Fourier series of summable and square summable functions
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 497
EP  - 515
VL  - 22
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1974_22_4_a1/
LA  - en
ID  - SM_1974_22_4_a1
ER  - 
%0 Journal Article
%A D. E. Men'shov
%T Application of Cesàro summability methods of negative order to trigonometric Fourier series of summable and square summable functions
%J Sbornik. Mathematics
%D 1974
%P 497-515
%V 22
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1974_22_4_a1/
%G en
%F SM_1974_22_4_a1
D. E. Men'shov. Application of Cesàro summability methods of negative order to trigonometric Fourier series of summable and square summable functions. Sbornik. Mathematics, Tome 22 (1974) no. 4, pp. 497-515. http://geodesic.mathdoc.fr/item/SM_1974_22_4_a1/

[1] A. Kolmogorov, “Sur les fonctions harmoniquees”, Fundam. Math., 7 (1925), 23–28

[2] A. Zigmund, Trigonometricheskie ryady, t. I, izd-vo «Mir», Moskva, 1965 | MR

[3] D. Menshov, “Primenenie metodov summirovaniya Chezaro otritsatelnogo poryadka k ryadam Fure-Lebega”, DAN SSSR, 210:2 (1973), 271–273

[4] N. K. Bari, Trigonometricheskie ryady, Fizmatgiz, Moskva, 1961 | MR