On the division by an isogeny of the points of an elliptic curve
Sbornik. Mathematics, Tome 22 (1974) no. 3, pp. 473-492 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the first part of this article we investigate the field of definition of the group $\nu^{-1}(E(K))$, where $\nu$ is an isogeny of degree $\rho$ of an elliptic curve $E$ over a local field $K$, with $[K:\mathbf Q_p]<\infty$. In the second part we show that local results have global consequences for various elliptic curves with complex multiplication. They are concerned with describing groups of rational points of Shafarevich–Tate groups and Mazur modules over $\Gamma$-extensions. Bibliography: 16 titles.
@article{SM_1974_22_3_a8,
     author = {V. G. Berkovich},
     title = {On the division by an isogeny of the points of an elliptic curve},
     journal = {Sbornik. Mathematics},
     pages = {473--492},
     year = {1974},
     volume = {22},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_22_3_a8/}
}
TY  - JOUR
AU  - V. G. Berkovich
TI  - On the division by an isogeny of the points of an elliptic curve
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 473
EP  - 492
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1974_22_3_a8/
LA  - en
ID  - SM_1974_22_3_a8
ER  - 
%0 Journal Article
%A V. G. Berkovich
%T On the division by an isogeny of the points of an elliptic curve
%J Sbornik. Mathematics
%D 1974
%P 473-492
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1974_22_3_a8/
%G en
%F SM_1974_22_3_a8
V. G. Berkovich. On the division by an isogeny of the points of an elliptic curve. Sbornik. Mathematics, Tome 22 (1974) no. 3, pp. 473-492. http://geodesic.mathdoc.fr/item/SM_1974_22_3_a8/

[1] Algebraicheskaya teoriya chisel, izd-vo «Mir», Moskva, 1969 | MR

[2] M. I. Bashmakov, N. Zh. Al-Nader, “Povedenie krivoi $x^3+y^3=1$ v krugovom $\Gamma$-rasshirenii”, Matem. sb., 90 (132) (1973), 117–130 | MR | Zbl

[3] P. F. Kurchanov, “Ellipticheskie krivye beskonechnogo ranga nad $\Gamma$-rasshireniyami”, Matem. sb., 90 (132) (1973), 320–324 | Zbl

[4] P. F. Kurchanov, “O range ellipticheskikh krivykh nad $\Gamma$-rasshireniyami”, Matem. sb., 93 (135) (1974), 460–466 | Zbl

[5] Yu. I. Manin, “Krugovye polya i modelyarnye krivye”, Uspekhi matem. nauk, XXVI:6 (162) (1971), 7–71 | MR

[6] D. K. Faddeev, “O gruppe klassov divizorov na nekotorykh algebraicheskikh krivykh”, DAN SSSR, 136:2 (1961), 296–298 | MR | Zbl

[7] D. K. Faddeev, “Ob invariantakh divizorov dlya krivykh $x^k(1-x)=y^l$ v $l$-adicheskom krugovom pole”, Trudy matem. in-ta im. V. A. Steklova, LXIV (1961), 284–293 | MR

[8] I. R. Shafarevich, “Rasshireniya s zadannymi tochkami vetvleniya”, Publ. Inst. Hautes Etudes Sci., Publ. Math., 18 (1963), 71–95 | DOI

[9] M. Deuring, “Die Klassenkörper der komplexen Multilpikation”, Erz. Math. Wiss., 1–2:10 (1958) | MR | Zbl

[10] A. Flörich, “Formal Groups”, Lecture Notes in Math., 74 (1968)

[11] M. Hazewinkel, On Norm Maps for one Dimensional Formal Groups. II. $\Gamma$-extensions of Local Fields with algebraically closed residue Field, Report 7210 of the Econometric Institute, Rotterdam, 1972

[12] B. Mazur, “Rational Points of Abelian Varietes with Values in Towers of Number Fields”, Invent. math., 18 (1972), 183–266 | DOI | MR | Zbl

[13] A. P. Ogg, “Elliptic curves and wild raminification”, Amer. J. Math., 89 (1967), 1–21 | DOI | MR | Zbl

[14] J.-P. Serre, J. Tate, “Good reduction of abelian varietes”, Ann. Math., 88 (1968), 492–517 | DOI | MR | Zbl

[15] J. Tate, “Algorithm for determining the type of singular fiber in an elliptic pencil Modular functions of one variable”, Lecture Notes in Math., 1973

[16] J. Tate, “$p$-divisible Groups”, Proc. of a conference on Local Fields held at Driebergen, Springer, 158–183 | MR