On the rank of elliptic curves over $\Gamma$-extensions
Sbornik. Mathematics, Tome 22 (1974) no. 3, pp. 465-472
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper an estimate is given for the $\rho$-invariant of the Mazur module for Abelian varieties over $\Gamma$-extensions. For an elliptic Fermat curve the group of points at each level of a noncyclotomic $\Gamma$-extension is computed.
Bibliography: 6 titles.
@article{SM_1974_22_3_a7,
author = {P. F. Kurchanov},
title = {On the rank of elliptic curves over $\Gamma$-extensions},
journal = {Sbornik. Mathematics},
pages = {465--472},
publisher = {mathdoc},
volume = {22},
number = {3},
year = {1974},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1974_22_3_a7/}
}
P. F. Kurchanov. On the rank of elliptic curves over $\Gamma$-extensions. Sbornik. Mathematics, Tome 22 (1974) no. 3, pp. 465-472. http://geodesic.mathdoc.fr/item/SM_1974_22_3_a7/