On the method of orthogonal extension of overdetermined systems
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 22 (1974) no. 3, pp. 456-464
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the article a description is given of Noether boundary value problems for overdetermined systems of partial differential equations with constant coefficients of the form 
\begin{equation}
\mathscr L(D)u=f,\qquad\mathscr W^*(D)u=g,
\end{equation}
where $\mathscr L(\xi)$ ($\xi=(\xi_1,\dots,\xi_m)$) is an $N\times n$ matrix inducing a homomorphism $\mathscr L\colon\mathscr P^n\to\nobreak\mathscr P^N$ whose kernel and cokernel are assumed to be free modules ($\mathscr P^n$ is the module composed of all $n$-dimensional vectors with coordinates polynomially depending on $\xi$). The matrix $\mathscr W(\xi)$ is composed of column vectors forming a basis in the kernel of $\mathscr L$.
A necessary condition for the solvability of (1) is 
\begin{equation}
\mathscr V(D)f=0,
\end{equation}
where $\mathscr V(\xi)$ is a matrix of row vectors forming a basis in the cokernel of $\mathscr L$. 
The system 
\begin{equation}
\mathscr L(D)u+v^*(D)p=f,\qquad\mathscr W^*(D)u=g,
\end{equation}
which is called an orthogonal extension of the original system, is introduced into consideration.
Bibliography: 13 titles.
			
            
            
            
          
        
      @article{SM_1974_22_3_a6,
     author = {I. S. Gudovich},
     title = {On the method of orthogonal extension of overdetermined systems},
     journal = {Sbornik. Mathematics},
     pages = {456--464},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_22_3_a6/}
}
                      
                      
                    I. S. Gudovich. On the method of orthogonal extension of overdetermined systems. Sbornik. Mathematics, Tome 22 (1974) no. 3, pp. 456-464. http://geodesic.mathdoc.fr/item/SM_1974_22_3_a6/
