Finite dimensionality of the kernel and cokernel of quasilinear elliptic mappings
Sbornik. Mathematics, Tome 22 (1974) no. 3, pp. 427-455 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work we investigate a certain class of nonlinear mappings of Banach spaces, namely, quasilinear elliptic mappings (q.e.m.'s). Examples of q.e.m.'s are given by mappings which correspond to nonlinear elliptic partial differential equations. For q.e.m.'s of a general form we obtain a theorem which is analogous to a known result on finite dimensionality of the kernel and cokernel of an elliptic linear operator. The results which we obtain are applied to elliptic nonlinear boundary value problems of a general form. Bibliography: 16 titles.
@article{SM_1974_22_3_a5,
     author = {A. V. Babin},
     title = {Finite dimensionality of the kernel and cokernel of quasilinear elliptic mappings},
     journal = {Sbornik. Mathematics},
     pages = {427--455},
     year = {1974},
     volume = {22},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_22_3_a5/}
}
TY  - JOUR
AU  - A. V. Babin
TI  - Finite dimensionality of the kernel and cokernel of quasilinear elliptic mappings
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 427
EP  - 455
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1974_22_3_a5/
LA  - en
ID  - SM_1974_22_3_a5
ER  - 
%0 Journal Article
%A A. V. Babin
%T Finite dimensionality of the kernel and cokernel of quasilinear elliptic mappings
%J Sbornik. Mathematics
%D 1974
%P 427-455
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1974_22_3_a5/
%G en
%F SM_1974_22_3_a5
A. V. Babin. Finite dimensionality of the kernel and cokernel of quasilinear elliptic mappings. Sbornik. Mathematics, Tome 22 (1974) no. 3, pp. 427-455. http://geodesic.mathdoc.fr/item/SM_1974_22_3_a5/

[1] S. Agmon, A. Duglis, L. Nirenberg, Otsenki vblizi granitsy reshenii ellipticheskikh uravnenii v chastnykh proizvodnykh pri obschikh granichnykh usloviyakh, IL, Moskva, 1962

[2] M. Atya, Lektsii po $K$-teorii, izd-vo «Mir», Moskva, 1967 | MR

[3] Zh. L. Lions, E. Madzhenes, Neodnorodnye granichnye zadachi i ikh prilozheniya, izd-vo «Mir», Moskva, 1971

[4] V. D. Milman, “Geometricheskaya teoriya prostranstva Banakha. Chast 1: Teoriya bazisnykh i minimalnykh sistem”, Uspekhi matem. nauk, XXV:3 (153) (1970), 113–174 | MR

[5] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, izd-vo «Nauka», Moskva, 1969 | MR

[6] S. I. Pokhozhaev, “Normalnaya razreshimost nelineinykh uravnenii v ravnomerno vypuklykh banakhovykh prostranstvakh”, Funkts. analiz, 3:2 (1969), 80–84 | MR

[7] S. I. Pokhozhaev, “O razreshimosti nelineinykh uravnenii s nechetnymi operatorami”, Funkts. analiz, 1:3 (1967), 66–73 | MR | Zbl

[8] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, izd-vo LGU, Leningrad, 1950

[9] A. I. Shnirelman, “Stepen otobrazheniya i nelineinaya zadacha Gilberta”, Matem. sb., 89 (131) (1972), 366–389

[10] F. E. Browder, “Variational boundary value problems for quasy-linear elliptic equations”, Proc. Nat. Acad. Sci. USA, 50:4 (1963), 592–598 | DOI | MR | Zbl

[11] F. E. Browder, “Mapping theorems for noncompact nonlinear operators in $B$-spaces”, Proc. Nat. Acad. Sci. USA, 54:2 (1965), 337–342 | DOI | MR | Zbl

[12] F. E. Browder, “Topology and non-linear functional equations”, Studia Math., 31:2 (1968), 189–204 | MR | Zbl

[13] F. E. Browder, “Normal solvability for nonlinear mappings into Banach spaces”, Bull. Amer. Math. Soc., 77:1 (1971), 73–77 | DOI | MR | Zbl

[14] S. Fuchik, O. John, J. Nečas, “Schauder bases in Sobolev spaces”, Comm. Math. Univ. Carolinae, 13:1 (1972), 163–175 | MR

[15] J. Nečas, “Sur l'alternative de Fredholm pour les operateurs non-lineares avec applications aux problemes aux limites”, Ann. Scuola Super. di Pisa, ser 3, 23:2 (1969), 331–345 | MR | Zbl

[16] J. Schauder, “Invarianz des Gebietes in Functionalraumen”, Studia Math., 1 (1929), 123–139 | Zbl

[17] S. Smale, “An infinite dimensional version of Sard's theorem”, Amer. J. Math., 87:4 (1965), 861–866 | DOI | MR | Zbl