The semigroup of prevarieties of linear group representations
Sbornik. Mathematics, Tome 22 (1974) no. 3, pp. 410-426 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Pairs $(G,\Gamma)$ are considered, where $G$ is a vector space over an arbitrary fixed field and $\Gamma$ is a group for which there is defined a representation with respect to $G$. A class of such pairs is called a prevariety if it is saturated and closed under the operations of forming subpairs and Cartesian products. A prevariety is called bounded if the variety generated by it differs from the class of all pairs. A prevariety is called small if it is generated by a single pair. The following theorems are proved. Theorem 1. Over any field the semigroup of bounded prevarieties of pairs is free. Theorem 2. The small prevarieties of pairs are indecomposable and generate a free semigroup of prevarieties. Bibliography: 13 titles.
@article{SM_1974_22_3_a4,
     author = {S. M. Vovsi},
     title = {The semigroup of prevarieties of linear group representations},
     journal = {Sbornik. Mathematics},
     pages = {410--426},
     year = {1974},
     volume = {22},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_22_3_a4/}
}
TY  - JOUR
AU  - S. M. Vovsi
TI  - The semigroup of prevarieties of linear group representations
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 410
EP  - 426
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1974_22_3_a4/
LA  - en
ID  - SM_1974_22_3_a4
ER  - 
%0 Journal Article
%A S. M. Vovsi
%T The semigroup of prevarieties of linear group representations
%J Sbornik. Mathematics
%D 1974
%P 410-426
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1974_22_3_a4/
%G en
%F SM_1974_22_3_a4
S. M. Vovsi. The semigroup of prevarieties of linear group representations. Sbornik. Mathematics, Tome 22 (1974) no. 3, pp. 410-426. http://geodesic.mathdoc.fr/item/SM_1974_22_3_a4/

[1] M. S. Tsalenko, “Polugruppa reflektivnykh podkategorii”, Matem. sb., 81 (123) (1970), 62–78 | Zbl

[2] S. M. Vovsi, “O beskonechnykh proizvedeniyakh klassov grupp”, Sib. matem. zh., 13:2 (1972), 272–285 | MR | Zbl

[3] B. I. Plotkin, A. S. Grinberg, “O polugruppakh mnogoobrazii, svyazannykh s predstavleniyami grupp”, Sib. matem. zh., 13:4 (1972), 841–858 | MR | Zbl

[4] M. J. Dunwoody, “On product varieties”, Math. Z., 104:2 (1968), 91–97 | DOI | MR | Zbl

[5] S. M. Vovsi, “O malykh predmnogoobraziyakh grupp”, Latv. matem. ezhegodnik, 15 (1974) | Zbl

[6] B. I. Plotkin, “Treugolnye proizvedeniya par”, Nekotorye voprosy teorii grupp, Riga, 1971, 140–170 | MR

[7] B. I. Plotkin, Gruppy avtomorfizmov algebraicheskikh sistem, izd-vo «Nauka», Moskva, 1966 | MR

[8] B. I. Plotkin, “Radikaly i mnogoobraziya v predstavleniyakh grupp”, Latv. matem. ezhegodnik, 10 (1972), 75–132 | MR | Zbl

[9] P. Hall, “On non-strictly simple groups”, Proc. Cambr. Phil. Soc., 59:3 (1963), 531–553 | DOI | MR

[10] B. I. Plotkin, “Gruppovye mnogoobraziya i mnogoobraziya par, svyazannye s predstavleniyami grupp”, Sib. matem. zh., 13:5 (1972), 1030–1053 | MR | Zbl

[11] S. M. Vovsi, “O predmnogoobraziyakh grupp”, Nekotorye voprosy teorii grupp, Riga, 1971, 5–13 | MR

[12] A. L. Shmelkin, “Spleteniya i mnogoobraziya grupp”, Izv. AN SSSR, seriya matem., 29 (1965), 149–170

[13] A. Yu. Olshanskii, “Mnogoobraziya finitno approksimiruemykh grupp”, Izv. AN SSSR, seriya matem., 33 (1969), 915–927