Simple algebras with involution, and unitary groups
Sbornik. Mathematics, Tome 22 (1974) no. 3, pp. 372-385 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $A$ be a central simple algebra on which an involutory antiautomorphism $S$ is given whose restriction to the center $K$ of $A$ is not the identity. Let $\Sigma(A^*)$ be the subgroup of the multiplicative group $A^*$ of $A$ generated by the elements $x\in A^*$ such that $x^S=x$, let $Nrd_{A/K}\colon A\to K$ be the reduced norm mapping of $A$ into $K$, and let $\Sigma'(A^*)$ be the subgroup of $A^*$ generated by the elements $x\in A^*$ whose reduced norm is invariant with respect to $S$. This paper considers the problem of when the groups $\Sigma'(A^*)$ and $\Sigma(A^*)$ coincide. Bibliography: 15 titles.
@article{SM_1974_22_3_a2,
     author = {V. I. Yanchevskii},
     title = {Simple algebras with involution, and unitary groups},
     journal = {Sbornik. Mathematics},
     pages = {372--385},
     year = {1974},
     volume = {22},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_22_3_a2/}
}
TY  - JOUR
AU  - V. I. Yanchevskii
TI  - Simple algebras with involution, and unitary groups
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 372
EP  - 385
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1974_22_3_a2/
LA  - en
ID  - SM_1974_22_3_a2
ER  - 
%0 Journal Article
%A V. I. Yanchevskii
%T Simple algebras with involution, and unitary groups
%J Sbornik. Mathematics
%D 1974
%P 372-385
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1974_22_3_a2/
%G en
%F SM_1974_22_3_a2
V. I. Yanchevskii. Simple algebras with involution, and unitary groups. Sbornik. Mathematics, Tome 22 (1974) no. 3, pp. 372-385. http://geodesic.mathdoc.fr/item/SM_1974_22_3_a2/

[1] A. Albert, Structure of Algebras, Amer. Math. Soc., New York, 1939 | Zbl

[2] N. Burbaki, Algebra. Moduli, koltsa, formy, izd-vo «Nauka», Moskva, 1966 | MR

[3] A. Veil, Osnovy teorii chisel, izd-vo «Mir», Moskva, 1972 | MR

[4] J. Tits, “Abstract and simple groups”, Ann. Math., 80:2 (1964), 313–329 | DOI | MR | Zbl

[5] V. P. Platonov, “Problema silnoi approksimatsii i gipoteza Knezera-Titsa dlya algebraicheskikh grupp”, Izv. AN SSSR, seriya matem., 33 (1969), 1211–1219 | MR | Zbl

[6] S. Wang, “On the commutator group of a simple algebra”, Amer. J. Math., 72:2 (1950), 323–334 | DOI | MR | Zbl

[7] V. P. Platonov, V. I. Yanchevskii, “Struktura unitarnykh grupp i kommutant prostoi algebry nad globalnymi polyami”, DAN SSSR, 208:3 (1973), 541–544 | MR | Zbl

[8] C. T. C. Wall, “On the classification of Hermitian Forms”, Invent. Math., 18:1/2 (1972), 119–141 | DOI | MR | Zbl

[9] S. Lang, “On quasi-algebraic closure”, Ann. Math., 55:2 (1952), 373–390 | DOI | MR | Zbl

[10] Zh.-P. Serr, Kogomologii Galua, izd-vo «Mir», Moskva, 1968 | MR

[11] M. Nagata, “Note on a paper of Lang concerning quasi-algebraic closure”, Mem. Univ. Kyoto, 30 (1957), 237–241 | MR | Zbl

[12] G. E. Wall, “The structure of a unitary factor group”, Publ. Math. IHES, 1:3 (1959) | MR

[13] J. Dieudonne, “Les determinants sur un corps non commutatif”, Bull. Soc. Math. France, 1943, 27–45 | MR | Zbl

[14] A. I. Maltsev, Osnovy lineinoi algebry, izd-vo «Nauka», Moskva, 1970

[15] N. Dzhekobson, Teoriya kolets, IL, Moskva, 1947