Simple algebras with involution, and unitary groups
Sbornik. Mathematics, Tome 22 (1974) no. 3, pp. 372-385

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a central simple algebra on which an involutory antiautomorphism $S$ is given whose restriction to the center $K$ of $A$ is not the identity. Let $\Sigma(A^*)$ be the subgroup of the multiplicative group $A^*$ of $A$ generated by the elements $x\in A^*$ such that $x^S=x$, let $Nrd_{A/K}\colon A\to K$ be the reduced norm mapping of $A$ into $K$, and let $\Sigma'(A^*)$ be the subgroup of $A^*$ generated by the elements $x\in A^*$ whose reduced norm is invariant with respect to $S$. This paper considers the problem of when the groups $\Sigma'(A^*)$ and $\Sigma(A^*)$ coincide. Bibliography: 15 titles.
@article{SM_1974_22_3_a2,
     author = {V. I. Yanchevskii},
     title = {Simple algebras with involution, and unitary groups},
     journal = {Sbornik. Mathematics},
     pages = {372--385},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_22_3_a2/}
}
TY  - JOUR
AU  - V. I. Yanchevskii
TI  - Simple algebras with involution, and unitary groups
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 372
EP  - 385
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1974_22_3_a2/
LA  - en
ID  - SM_1974_22_3_a2
ER  - 
%0 Journal Article
%A V. I. Yanchevskii
%T Simple algebras with involution, and unitary groups
%J Sbornik. Mathematics
%D 1974
%P 372-385
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1974_22_3_a2/
%G en
%F SM_1974_22_3_a2
V. I. Yanchevskii. Simple algebras with involution, and unitary groups. Sbornik. Mathematics, Tome 22 (1974) no. 3, pp. 372-385. http://geodesic.mathdoc.fr/item/SM_1974_22_3_a2/