Asymptotics of the eigenvalues of the Schr\"odinger operator
Sbornik. Mathematics, Tome 22 (1974) no. 3, pp. 349-371
Voir la notice de l'article provenant de la source Math-Net.Ru
We examine the selfadjoint operator $H=-\Delta+V$ in $L_2(\mathbf R^m)$. We assume that the potential $V(x)\geqslant1$ tends to $+\infty$ as $|x|\to\infty$. Under these conditions the spectrum of $H$ is discrete. In the paper the well-known asymptotic formula
\begin{equation}
N(\lambda,H)\sim\gamma_m\int(\lambda-V(x))_+^{m/2}\,dx,\qquad\lambda\to\infty,
\tag{\ast}
\end{equation}
for the distribution function of the eigenvalues is justified under very weak assumptions on $V$, namely the following conditions:
1) $\sigma(2\lambda)\leqslant c\sigma(\lambda)$, where $\sigma(\lambda)=\operatorname{mes}\{x:V(x)\lambda\}$;
2) $V(x)\leqslant cV(y)$ almost everywhere when $|x-y|1$;
3) there exist a continuous function $\eta(t)\geqslant0$, $0\leqslant t1$, $\eta(0)=0$, and an index $\beta\in[0,1/2)$ such that
$$
\int_{|x-y|\leqslant1,\,|x+z-y|\leqslant1}|V(x+z)-V(x)|\,dx\eta(|z|)|z|^{2\beta}V(y)^{1+\beta}
$$
for any $y\in\mathbf R^m$, $z\in\mathbf R^m$, $|z|1$.
Bibliography: 12 titles.
@article{SM_1974_22_3_a1,
author = {G. V. Rozenblum},
title = {Asymptotics of the eigenvalues of the {Schr\"odinger} operator},
journal = {Sbornik. Mathematics},
pages = {349--371},
publisher = {mathdoc},
volume = {22},
number = {3},
year = {1974},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1974_22_3_a1/}
}
G. V. Rozenblum. Asymptotics of the eigenvalues of the Schr\"odinger operator. Sbornik. Mathematics, Tome 22 (1974) no. 3, pp. 349-371. http://geodesic.mathdoc.fr/item/SM_1974_22_3_a1/