Stabilization for classical groups over rings
Sbornik. Mathematics, Tome 22 (1974) no. 2, pp. 271-303 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main goal of this paper is to prove theorems about stabilization for groups of automorphisms of modules over rings and modules with quadratic forms over rings with involutions, which allow us to describe the structure of all the classical arithmetic groups of rank greater than one. The presentation is made in such generality that our results generalize and strengthen many previously known results about transitivity and cancellation, about normal subgroups, etc. Bibliography: 14 titles.
@article{SM_1974_22_2_a6,
     author = {L. N. Vaserstein},
     title = {Stabilization for classical groups over rings},
     journal = {Sbornik. Mathematics},
     pages = {271--303},
     year = {1974},
     volume = {22},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_22_2_a6/}
}
TY  - JOUR
AU  - L. N. Vaserstein
TI  - Stabilization for classical groups over rings
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 271
EP  - 303
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1974_22_2_a6/
LA  - en
ID  - SM_1974_22_2_a6
ER  - 
%0 Journal Article
%A L. N. Vaserstein
%T Stabilization for classical groups over rings
%J Sbornik. Mathematics
%D 1974
%P 271-303
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1974_22_2_a6/
%G en
%F SM_1974_22_2_a6
L. N. Vaserstein. Stabilization for classical groups over rings. Sbornik. Mathematics, Tome 22 (1974) no. 2, pp. 271-303. http://geodesic.mathdoc.fr/item/SM_1974_22_2_a6/

[1] H. Bass, “$K$-theory and stable algebra”, Publ. Math., 22 (1964), 5–60 | MR | Zbl

[2] H. Bass, Algebraic $K$-theory, New York, 1968 | MR

[3] Kh. Bass, Dzh. Milnor, Zh.-P. Serr, “Reshenie kongruentsproblemy dlya $SL_n$, $n\geqslant 3$, i $Sp_{2n}$, $n\geqslant 2$”, Matematika, 14:6 (1970), 64–128 ; 15:1 (1971), 44–60 | Zbl | Zbl

[4] L. N. Vasershtein, “$K_1$-teoriya i kongruentsproblema”, Matem. zametki, 5:2 (1969), 233–244

[5] L. N. Vasershtein, “O stabilizatsii obschei lineinoi gruppy nad koltsom”, Matem. sb., 79 (121) (1969), 405–424 | MR

[6] L. N. Vasershtein, “Stabilnyi rang kolets i razmernost topologicheskikh prostranstv”, Funkts. analiz, 5:2 (1971), 17–27 | MR | Zbl

[7] A. Bak, “On modules with quadratic forms”, Lecture notes in Math., 108 (1969), 55–66 | DOI | MR | Zbl

[8] A. Bak, The stable structure of quadratic modules, preprint

[9] N. Dzhekobson, Teoriya kolets, IL, Moskva, 1947

[10] L. N. Vasershtein, “Stabilizatsiya unitarnykh i ortogonalnykh grupp nad koltsom s involyutsiei”, Matem. sb., 81 (123) (1970), 328–351

[11] L. N. Vasershtein, “Stroenie klassicheskikh arifmeticheskikh grupp ranga, bolshego 1”, Matem. sb., 91 (133) (1973), 445–470

[12] N. Burbaki, Algebra (moduli, koltsa, formy), izd-vo «Nauka», Moskva, 1966 | MR

[13] A. Roy, “Concelations of quadratic forms over commutative rings”, J. of Algebra, 10:3 (1968), 228–298 | DOI | MR

[14] A. Veil, Osnovy teorii chisel, izd-vo «Mir», Moskva, 1972 | MR