Intertwining operators and complementary series in the class of representations induced from parabolic subgroups of the general linear group over a locally compact division algebra
Sbornik. Mathematics, Tome 22 (1974) no. 2, pp. 217-255 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study the representations $\operatorname{Ind}(G,P,\pi)$ of the group $G=GL(n,D)$, where $D$ is a locally compact nondiscrete division algebra, that are induced by irreducible representations $\pi$ of an arbitrary parabolic subgroup $P\subset G$. If $D$ is totally disconnected, $\pi$ is assumed to be either supercuspidal (in the sense of Harish-Chandra; this is the same as absolutely cuspidal in the sense of Jacquet), or one-dimensional; we also allow combinations of these cases of a specific sort. We give a construction of intertwining operators in this class of representations generalizing the construction of Schiffmann, Knapp and Stein. Using these intertwining operators, we prove that for the “principal series” representation $\operatorname{Ind}(G,P,\pi)$ to be contained in the “complementary series” the necessary formal condition of symmetry on $(P,\pi)$ turns out to also be sufficient. If $\pi$ is one-dimensional we estimate the width of the “critical interval”. Under certain conditions this estimate is best possible. Bibliography: 28 titles.
@article{SM_1974_22_2_a4,
     author = {G. I. Olshanskii},
     title = {Intertwining operators and complementary series in the class of representations induced from parabolic subgroups of the general linear group over a~locally compact division algebra},
     journal = {Sbornik. Mathematics},
     pages = {217--255},
     year = {1974},
     volume = {22},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_22_2_a4/}
}
TY  - JOUR
AU  - G. I. Olshanskii
TI  - Intertwining operators and complementary series in the class of representations induced from parabolic subgroups of the general linear group over a locally compact division algebra
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 217
EP  - 255
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1974_22_2_a4/
LA  - en
ID  - SM_1974_22_2_a4
ER  - 
%0 Journal Article
%A G. I. Olshanskii
%T Intertwining operators and complementary series in the class of representations induced from parabolic subgroups of the general linear group over a locally compact division algebra
%J Sbornik. Mathematics
%D 1974
%P 217-255
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1974_22_2_a4/
%G en
%F SM_1974_22_2_a4
G. I. Olshanskii. Intertwining operators and complementary series in the class of representations induced from parabolic subgroups of the general linear group over a locally compact division algebra. Sbornik. Mathematics, Tome 22 (1974) no. 2, pp. 217-255. http://geodesic.mathdoc.fr/item/SM_1974_22_2_a4/

[1] Algebraicheskaya teoriya chisel, izd-vo «Mir», Moskva, 1969 | MR

[2] R. Godement, H. Jacquet, Zeta-functions of simple algebras, Springer, Berlin, 1972 | MR | Zbl

[3] E. M. Stein, “Analysis in matrix space and some new representations of $SL(n, \mathbf{C})$”, Ann. Math., 86 (1967), 461–490 | DOI | MR | Zbl

[4] I. M. Gelfand, M. I. Graev, I. I. Pyatetskii-Shapiro, Teoriya predstavlenii i avtomorfnye funktsii, izd-vo «Nauka», Moskva, 1966 | MR

[5] H. Jacquet, R. P. Langlands, Automorphic functions on $CL(2)$, Springer, Berlin, 1970 | MR | Zbl

[6] I. Satake, “Theory of spherical functions on reductive algebraic groups over $p$-adic fields”, Publ. Math. IHES, 18 (1963), 229–319 | MR

[7] I. M. Gelfand, M. A. Naimark, “Unitarnye predstavleniya klassicheskikh grupp”, Trudy matem. in-ta im. V. A. Steklova, XXXVI (1950) | MR | Zbl

[8] A. W. Knapp, E. M. Stein, “Interwining operators for semisimple Lie groups”, Ann. Math., 93:3 (1971), 489–579 | DOI | MR

[9] B. Kostant, “Suschestvovanie i neprivodimost nekotorykh serii predstavlenii”, Matematika, 14:2 (1970), 102–116 | Zbl

[10] I. M. Gelfand, M. I. Graev, N. Ya. Vilenkin, Integralnaya geometriya i nekotorye voprosy teorii predstavlenii, Fizmatgiz, Moskva, 1962

[11] A. I. Shtern, “O vpolne neprivodimykh predstavleniyakh $SU(2,1)$”, DAN SSSR, 179:6 (1968), 1289–1292 | MR | Zbl

[12] Harish-Chandra, “On the theory of Eisenstein integral”, Conference on harmonic analysis, Springer, Berlin, 1972, 123–150 | MR

[13] Harish-Chandra, Harmonic analysis on reductive $p$-adic groups, preprint

[14] A. Veil, Osnovy teorii chisel, izd-vo «Mir», Moskva, 1972 | MR

[15] E. Artin, Geometricheskaya algebra, izd-vo «Nauka», Moskva, 1969 | MR

[16] S. Wang, “On the commutator group of a simple algebra”, Amer. J. Math., 72 (1950), 323–334 | DOI | MR | Zbl

[17] V. G. Chernov, “Odnorodnye obobschennye funktsii i preobrazovanie Radona v prostranstve pryamougolnykh matrits nad nepreryvnym lokalno kompaktnym nesvyaznym polem”, Trudy seminara po vekt. i tenz. analizu, no. 16, izd-vo MGU, Moskva, 1972, 374–406

[18] Zh.-P. Serr, Algebry Li i gruppy Li, izd-vo «Mir», Moskva, 1969 | MR

[19] F. Bruhat, “Sur les représentations induites des groupes de Lie”, Bull. Soc. Math. France, 84:2 (1956), 97–205 | MR | Zbl

[20] F. Bruhat, “Distributions sur un groupe localement compact et applications à l'étude des representations des groupes $p$-adiques”, Bull. Soc. Math. France, 89:1 (1961), 43–75 | MR | Zbl

[21] T. A. Springer, “Parabolicheskie formy dlya konechnykh grupp”, Matematika, 114:6 (1970), 138–145 | MR

[22] Harish-Chandra, Harmonic analysis on reductive $p$-adic groups, notes by G. van Dijk, Springer, Berlin, 1970 | MR | Zbl

[23] G. Schiffmann, “Integrales d'entrelacement et fonctions de Whittaker”, Bull. Soc. Math. France, 99:1 (1971), 3–72 | MR | Zbl

[24] G. van Dijk, “Computation of certain induced characters of $p$-adic groups”, Math. Ann., 199:3 (1972), 229–240 | MR | Zbl

[25] M. Rais, “Distributions homogènes sur des espaces de matrices”, Bull. Soc. Math. France, 1972, no. 30 | MR

[26] D. P. Zhelobenko, “Simmetriya v klasse elementarnykh predstavlenii poluprostoi kompleksnoi gruppy Li”, Funkts. analiz, 1:2 (1967), 15–38 | MR

[27] G. I. Olshanskii, “O teoreme dvoistvennosti Frobeniusa”, Funkts. analiz, 3:4 (1969), 49–58 | MR

[28] G. I. Olshanskii, “O spletayuschikh operatorakh dlya indutsirovannykh predstavlenii reduktivnykh $p$-adicheskikh grupp”, Uspekhi matem. nauk, XXVII:6 (168) (1972), 243–244 | MR