On the application of spectral theory to obtain estimates of solutions of the Schrödinger equation
Sbornik. Mathematics, Tome 22 (1974) no. 2, pp. 167-186 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Estimates which depend on the lower bound $M$ of the minimal operator $-\Delta+q$, $\operatorname{Im}q=0$ in the neighborhood of the point $x$ are obtained for the solutions $u(x)$ of the Schrödinger equation. The behavior of $u(x)$ as $|x|\to\infty$ in a cone, and in the whole of $\mathbf R^n$, is investigated in the case $M>0$. Bibliography: 11 titles.
@article{SM_1974_22_2_a1,
     author = {Yu. B. Orochko},
     title = {On the application of spectral theory to obtain estimates of solutions of the {Schr\"odinger} equation},
     journal = {Sbornik. Mathematics},
     pages = {167--186},
     year = {1974},
     volume = {22},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_22_2_a1/}
}
TY  - JOUR
AU  - Yu. B. Orochko
TI  - On the application of spectral theory to obtain estimates of solutions of the Schrödinger equation
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 167
EP  - 186
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1974_22_2_a1/
LA  - en
ID  - SM_1974_22_2_a1
ER  - 
%0 Journal Article
%A Yu. B. Orochko
%T On the application of spectral theory to obtain estimates of solutions of the Schrödinger equation
%J Sbornik. Mathematics
%D 1974
%P 167-186
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1974_22_2_a1/
%G en
%F SM_1974_22_2_a1
Yu. B. Orochko. On the application of spectral theory to obtain estimates of solutions of the Schrödinger equation. Sbornik. Mathematics, Tome 22 (1974) no. 2, pp. 167-186. http://geodesic.mathdoc.fr/item/SM_1974_22_2_a1/

[1] T. Kato, “Growth properties of solutions of the reduced wave equations with a variable coefficients”, Comm. Pure Appl. Math., 12:3 (1959), 403–425 ; Matematika, 5:1 (1961), 115–135 | DOI | MR | Zbl

[2] E. E. Shnol, “O povedenii sobstvennykh funktsii uravneniya Shredingera”, Matem. sb., 42 (84) (1957), 273–286 | Zbl

[3] Yu. M. Berezanskii, Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, izd-vo «Naukova dumka», Kiev, 1965 | MR

[4] Yu. B. Orochko, “Uluchshenie nekotorykh otsenok na beskonechnosti reshenii odnorodnogo uravneniya Shredingera s potentsialom, vozrastayuschim v chasti prostranstva”, Ukr. matem. zh., 22:3 (1970), 412–416 | Zbl

[5] V. A. Ilin, “O razreshimosti smeshannykh zadach dlya giperbolicheskogo i parabolicheskogo uravnenii”, Uspekhi matem. nauk, XV:2 (92) (1960), 97–154

[6] E. M. Landis, Uravneniya vtorogo poryadka ellipticheskogo i parabolicheskogo tipov, izd-vo «Nauka», Moskva, 1971 | MR

[7] N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, izd-vo «Nauka», Moskva, 1966 | MR

[8] F. Riss, B. Sekefalvi-Nad, Lektsii po funktsionalnomu analizu, IL, Moskva, 1954

[9] G. Beitmen, A. Erdeii, Tablitsy integralnykh preobrazovanii, t. 1, izd-vo «Nauka», Moskva, 1969

[10] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii (funktsii Besselya, $\dots$), izd-vo «Nauka», Moskva, 1966 | MR

[11] Funktsionalnyi analiz, ed. S. G. Krein, izd-vo «Nauka», Moskva, 1972 | MR