A~transformation of the phase space of a~diffusion process that removes the drift
Sbornik. Mathematics, Tome 22 (1974) no. 1, pp. 129-149
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we construct a one-to-one (and quasi-isometric) transformation of a phase space that allows us to pass from a diffusion process with nonzero drift coefficient to a process without drift. Using this transformation we construct strong solutions of stochastic differential equations with a “bad” drift coefficient and give other applications.
Bibliography: 21 titles.
@article{SM_1974_22_1_a7,
author = {A. K. Zvonkin},
title = {A~transformation of the phase space of a~diffusion process that removes the drift},
journal = {Sbornik. Mathematics},
pages = {129--149},
publisher = {mathdoc},
volume = {22},
number = {1},
year = {1974},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1974_22_1_a7/}
}
A. K. Zvonkin. A~transformation of the phase space of a~diffusion process that removes the drift. Sbornik. Mathematics, Tome 22 (1974) no. 1, pp. 129-149. http://geodesic.mathdoc.fr/item/SM_1974_22_1_a7/