On the quasicorrectness of the generalized rotation condition in the theory of infinitesimal bendings of surfaces
Sbornik. Mathematics, Tome 22 (1974) no. 1, pp. 49-60
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper various tests are given for the quasicorrectness of the generalized rotation boundary condition for infinitesimal bendings of a surface with positive Gaussian curvature, and the possible distribution of characteristic vector fields under such conditions is described. Figures: 1. Bibliography: 3 titles.
@article{SM_1974_22_1_a3,
author = {V. T. Fomenko},
title = {On the quasicorrectness of the generalized rotation condition in the theory of infinitesimal bendings of surfaces},
journal = {Sbornik. Mathematics},
pages = {49--60},
year = {1974},
volume = {22},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1974_22_1_a3/}
}
TY - JOUR AU - V. T. Fomenko TI - On the quasicorrectness of the generalized rotation condition in the theory of infinitesimal bendings of surfaces JO - Sbornik. Mathematics PY - 1974 SP - 49 EP - 60 VL - 22 IS - 1 UR - http://geodesic.mathdoc.fr/item/SM_1974_22_1_a3/ LA - en ID - SM_1974_22_1_a3 ER -
V. T. Fomenko. On the quasicorrectness of the generalized rotation condition in the theory of infinitesimal bendings of surfaces. Sbornik. Mathematics, Tome 22 (1974) no. 1, pp. 49-60. http://geodesic.mathdoc.fr/item/SM_1974_22_1_a3/
[1] I. N. Vekua, Obobschennye analiticheskie funktsii, Fizmatgiz, Moskva, 1959 | MR
[2] K. Miranda, Uravneniya s chastnymi proizvodnymi ellipticheskogo tipa, IL, Moskva, 1957
[3] V. I. Smirnov, Kurs vysshei matematiki, t. IV, Gostekhizdat, Moskva, 1953