Conditions for the absence of phase transitions in one-dimensional classical systems
Sbornik. Mathematics, Tome 22 (1974) no. 1, pp. 28-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a wide class of one-dimensional systems in classical statistical physics which includes both continuous and lattice models. We prove a result concerning the uniqueness of the Gibbs state which generalizes earlier known results. As a consequence of this result we prove the differentiability of the free energy and the uniformly strong mixing property of Gibbs random processes. Bibliography: 20 titles.
@article{SM_1974_22_1_a2,
     author = {R. L. Dobrushin},
     title = {Conditions for the absence of phase transitions in one-dimensional classical systems},
     journal = {Sbornik. Mathematics},
     pages = {28--48},
     year = {1974},
     volume = {22},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_22_1_a2/}
}
TY  - JOUR
AU  - R. L. Dobrushin
TI  - Conditions for the absence of phase transitions in one-dimensional classical systems
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 28
EP  - 48
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1974_22_1_a2/
LA  - en
ID  - SM_1974_22_1_a2
ER  - 
%0 Journal Article
%A R. L. Dobrushin
%T Conditions for the absence of phase transitions in one-dimensional classical systems
%J Sbornik. Mathematics
%D 1974
%P 28-48
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1974_22_1_a2/
%G en
%F SM_1974_22_1_a2
R. L. Dobrushin. Conditions for the absence of phase transitions in one-dimensional classical systems. Sbornik. Mathematics, Tome 22 (1974) no. 1, pp. 28-48. http://geodesic.mathdoc.fr/item/SM_1974_22_1_a2/

[1] R. L. Dobrushin, “Opisanie sluchainogo polya pri pomoschi uslovnykh veroyatnostei i usloviya ego regulyarnosti”, Teoriya veroyatn., XIII:2 (1968), 201–229

[2] R. L. Dobrushin, “Zadacha edinstvennosti gibbsovskogo sluchainogo polya i problema razovykh perekhodov”, Funkts. analiz, 2:4 (1968), 44–57 | MR | Zbl

[3] R. L. Dobrushin, “Gibbsovskie polya—obschii sluchai”, Funkts. analiz, 3:1 (1969), 27–35 | MR | Zbl

[4] D. Ruelle, “Statistical Mechanics of One-dimensional Lattice Gas”, Comm. Math. Phys., 9:4 (1968), 267–278 | DOI | MR | Zbl

[5] I. A. Ibragimov, Yu. V. Linnik, Nezavisimye i statsionarno svyazannye velichiny, izd-vo «Nauka», Moskva, 1965

[6] F. J. Dyson, “Existence of phase transitions in one-dimensional Ising Ferromagnet”, Comm. Math. Phys., 12:2 (1969), 91–107 | DOI | MR

[7] M. E. Fisher, B. U. Felderhof, “Phase transition in one-dimensional clusterinteraction fluids. IA, IB, II, III”, Ann. Phys., 58:1 (1970), 176–300 | DOI

[8] G. Gallavotti, S. Miracle-Sole, D. Ruelle, “Absence of phase transition in one-dimensional systems with hard core”, Phys. Lett., A26:8 (1968), 350–351

[9] G. Gallavotti, S. Miracle-Sole, “Absence of phase transitions in hard-core one-dimensional systems with longe-range interactions”, J. Math. Phys., 11:1 (1969), 147–154 | DOI | MR

[10] R. L. Dobrushin, “Analycity of correlation functions in one-dimensional systems with slowly decreasing potentials”, Comm. Math. Phys., 32:4 (1973), 269–289 | DOI | MR

[11] W. Feller, An introduction to probability theory and its applications, vol. I, J. Willey S., New York, 1950 ; V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, IL, Moskva, 1952 | MR | Zbl

[12] R. L. Dobrushin, “Gibbsovskie sluchainye polya dlya reshetchatykh sistem s poparnym vzaimodeistviem”, Funkts. analiz, 2:4 (1968), 31–43 | MR

[13] D. Ruelle, Statistical mechanics—rigorous results, W. A. Benjamin, New York–Amsterdam, 1969 ; D. Ryuel, Statisticheskaya mekhanika—strogie rezultaty, izd-vo «Mir», Moskva, 1971 | MR | Zbl

[14] Yu. M. Sukhov, “Primenenie matrichnogo metoda dlya odnomernykh nepreryvnykh sistem klassicheskoi statisticheskoi mekhaniki”, Uspekhi matem. nauk, XXV:2 (152) (1970), 277–278

[15] H. Araki, “Gibbs states of a one-dimensional quantum lattice”, Comm. Math. Phys., 14:2 (1969), 120–157 | DOI | MR | Zbl

[16] Yu. M. Sukhov, “Predelnye matritsy plotnosti dlya odnomernykh nepreryvnykh sistem kvantovoi statisticheskoi mekhaniki”, Matem. sb., 83 (125) (1970), 491–513

[17] Yu. M. Sukhov, “Suschestvovanie i regulyarnost predelnogo sostoyaniya Gibbsa dlya odnomernykh nepreryvnykh sistem kvantovoi statisticheskoi mekhaniki”, DAN SSSR, 195:5 (1970), 1042–1044

[18] O. E. Lanford, D .Ruelle, “Observables at infinity and states with short range correlations in statistical mechanics”, Comm. Math. Phys., 13:3 (1968), 194–215 | DOI | MR

[19] R. L. Dobrushin, “Zadanie sistemy sluchainykh velichin pri pomoschi uslovnykh raspredelenii”, Teoriya veroyatn., XV:3 (1970), 469–497

[20] R. L. Dobrushin, “Asimptoticheskoe povedenie gibbsovskikh raspredelenii dlya reshetchatykh sistem v zavisimosti ot formy sosuda”, Teor. i matem. fizika, 12:1 (1972), 115–134