Conditions for the absence of phase transitions in one-dimensional classical systems
Sbornik. Mathematics, Tome 22 (1974) no. 1, pp. 28-48

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a wide class of one-dimensional systems in classical statistical physics which includes both continuous and lattice models. We prove a result concerning the uniqueness of the Gibbs state which generalizes earlier known results. As a consequence of this result we prove the differentiability of the free energy and the uniformly strong mixing property of Gibbs random processes. Bibliography: 20 titles.
@article{SM_1974_22_1_a2,
     author = {R. L. Dobrushin},
     title = {Conditions for the absence of phase transitions in one-dimensional classical systems},
     journal = {Sbornik. Mathematics},
     pages = {28--48},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_22_1_a2/}
}
TY  - JOUR
AU  - R. L. Dobrushin
TI  - Conditions for the absence of phase transitions in one-dimensional classical systems
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 28
EP  - 48
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1974_22_1_a2/
LA  - en
ID  - SM_1974_22_1_a2
ER  - 
%0 Journal Article
%A R. L. Dobrushin
%T Conditions for the absence of phase transitions in one-dimensional classical systems
%J Sbornik. Mathematics
%D 1974
%P 28-48
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1974_22_1_a2/
%G en
%F SM_1974_22_1_a2
R. L. Dobrushin. Conditions for the absence of phase transitions in one-dimensional classical systems. Sbornik. Mathematics, Tome 22 (1974) no. 1, pp. 28-48. http://geodesic.mathdoc.fr/item/SM_1974_22_1_a2/