On the existence of discontinuous solutions for a class of multidimensional quasiregular variational problems
Sbornik. Mathematics, Tome 22 (1974) no. 1, pp. 17-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the existence of discontinuous solutions $x^{n+1}=u(x)$, $x\in\Omega$, of a positive definite quasiregular $n$-dimensional variational problem is established when the order of growth of the integrand of the functional degenerates up to unity on non-self-intersecting $(n-1)$-dimensional surfaces lying in the region $\Omega$ or on its boundary $S$. Bibliography: 11 titles.
@article{SM_1974_22_1_a1,
     author = {S. F. Morozov},
     title = {On the existence of discontinuous solutions for a~class of multidimensional quasiregular variational problems},
     journal = {Sbornik. Mathematics},
     pages = {17--27},
     year = {1974},
     volume = {22},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_22_1_a1/}
}
TY  - JOUR
AU  - S. F. Morozov
TI  - On the existence of discontinuous solutions for a class of multidimensional quasiregular variational problems
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 17
EP  - 27
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1974_22_1_a1/
LA  - en
ID  - SM_1974_22_1_a1
ER  - 
%0 Journal Article
%A S. F. Morozov
%T On the existence of discontinuous solutions for a class of multidimensional quasiregular variational problems
%J Sbornik. Mathematics
%D 1974
%P 17-27
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1974_22_1_a1/
%G en
%F SM_1974_22_1_a1
S. F. Morozov. On the existence of discontinuous solutions for a class of multidimensional quasiregular variational problems. Sbornik. Mathematics, Tome 22 (1974) no. 1, pp. 17-27. http://geodesic.mathdoc.fr/item/SM_1974_22_1_a1/

[1] S. N. Bernshtein, “Ob uravneniyakh variatsionnogo ischisleniya”, Sobr. soch., t. III, izd-vo AN SSSR, Moskva, 1960, 191–242

[2] A. G. Sigalov, “Dvumernye zadachi variatsionnogo ischisleniya v neparametricheskoi forme, preobrazovannye k parametricheskoi forme”, Matem. sb., 34 (76) (1954), 385–406 | MR | Zbl

[3] S. F. Morozov, “O razryvnykh resheniyakh dvumernykh zadach variatsionnogo ischisleniya v neparametricheskoi forme”, Izv. VUZov, matematika, 1969, no. 9, 56–64 | MR | Zbl

[4] S. F. Morozov, “O neobkhodimykh usloviyakh ekstremuma dvumernykh variatsionnykh zadach na sovokupnosti razryvnykh funktsii”, Izv. VUZov, matematika, 1972, no. 1, 55–63 | MR | Zbl

[5] R. Courant, “Über direkte Methoden der Variationsrechnung und verwundte Fragen”, Math. Ann., 97 (1927), 711–736 | DOI | MR | Zbl

[6] S. F. Morozov, V. I. Sumin, “Mnogomernye variatsionnye zadachi v klasse razryvnykh funktsii”, Izv. VUZov, matematika, 1973, no. 8, 54–67 | MR | Zbl

[7] S. F. Morozov, V. I. Plotnikov, “O neobkhodimykh i dostatochnykh usloviyakh nepreryvnosti i polunepreryvnosti funktsionalov variatsionnogo ischisleniya”, Matem. sb., 57 (99) (1962), 265–280 | MR | Zbl

[8] G. I. Shilova, “Suschestvovanie absolyutnogo minimuma kratnykh integralov variatsionnogo ischisleniya v neparametricheskoi forme”, Matem. sb., 51 (93) (1960), 253–272 | Zbl

[9] S. F. Morozov, V. I. Plotnikov, “O nepreryvnosti obobschennykh reshenii variatsionnykh zadach”, Matem. sb., 65 (107) (1964), 473–485 | MR | Zbl

[10] S. F. Morozov, V. I. Plotnikov, “O svoistvakh nepreryvnosti po Gelderu obobschennykh reshenii mnogomernykh variatsionnykh zadach”, Matem. sb., 71 (113) (1966), 586–597 | MR | Zbl

[11] O. A. Ladyzhenskaya, N. N. Uraltseva, “Kvazilineinye ellipticheskie uravneniya i variatsionnye zadachi so mnogimi nezavisimymi peremennymi”, Uspekhi matem. nauk, XVI:1 (97) (1961), 19–90 | MR