The theorems of Lindelöf and Fatou in $\mathbf C^n$
Sbornik. Mathematics, Tome 21 (1973) no. 4, pp. 619-639 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author proves a generalization of the theorems of Lindelöf and Fatou in which approach to the boundary along complex tangential directions is allowed. Bibliography: 11 titles.
@article{SM_1973_21_4_a9,
     author = {E. M. Chirka},
     title = {The theorems of {Lindel\"of} and {Fatou} in~$\mathbf C^n$},
     journal = {Sbornik. Mathematics},
     pages = {619--639},
     year = {1973},
     volume = {21},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_21_4_a9/}
}
TY  - JOUR
AU  - E. M. Chirka
TI  - The theorems of Lindelöf and Fatou in $\mathbf C^n$
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 619
EP  - 639
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1973_21_4_a9/
LA  - en
ID  - SM_1973_21_4_a9
ER  - 
%0 Journal Article
%A E. M. Chirka
%T The theorems of Lindelöf and Fatou in $\mathbf C^n$
%J Sbornik. Mathematics
%D 1973
%P 619-639
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1973_21_4_a9/
%G en
%F SM_1973_21_4_a9
E. M. Chirka. The theorems of Lindelöf and Fatou in $\mathbf C^n$. Sbornik. Mathematics, Tome 21 (1973) no. 4, pp. 619-639. http://geodesic.mathdoc.fr/item/SM_1973_21_4_a9/

[1] I. I. Privalov, Granichnye svoistva analiticheskikh funktsii, Gostekhizdat, Moskva–Leningrad, 1950

[2] A. Korányi, “Harmonic functions on Hermitian hyperbolic space”, Trans. Amer. Math. Soc., 135 (1969), 507–516 | DOI | MR | Zbl

[3] E. M. Stein, “An analogues of Fatou's theorem and estimates for maximal functions”, Geometrie of Homogeneous bounded domains, 1968, 291–306 | MR

[4] A. Korányi, E. M. Stein, “Fatou's theorem for generalized halfplanes”, Ann. Scuola Norm. Super, Pisa, 22 (1968), 107–112 | MR | Zbl

[5] E. M. Stein, “Boundary values of holomorphic functions”, Bull. Amer. Math. Soc., 76 (1970), 1292–1296 | DOI | MR | Zbl

[6] Boundary behavior of holomorphic functions of several complex variables, Princeton, 1972

[7] M. A. Evgrafov, Analiticheskie funktsii, izd-vo «Nauka», Moskva, 1968 | MR

[8] H. Federer, Geometric Measure Theory, Springer-Verlag, 1969 | MR

[9] L. Hörmander, “$L^p$-estimates for (pluri-) subharmonic functions”, Math. Scand., 20 (1967), 65–78 | MR | Zbl

[10] A. M. Davie, B. K. Øksendal, “Peak interpolation sets for some algebras of holomorphic functions”, Pacific J. Math., 41 (1972), 81–87 | MR

[11] I. I. Privalov, P. I. Kuznetsov, “Granichnye zadachi i razlichnye klassy garmonicheskikh i subgarmonicheskikh funktsii, opredelennye v proizvolnykh oblastyakh”, Matem. sb., 6 (48) (1939), 345–376