@article{SM_1973_21_4_a9,
author = {E. M. Chirka},
title = {The theorems of {Lindel\"of} and {Fatou} in~$\mathbf C^n$},
journal = {Sbornik. Mathematics},
pages = {619--639},
year = {1973},
volume = {21},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1973_21_4_a9/}
}
E. M. Chirka. The theorems of Lindelöf and Fatou in $\mathbf C^n$. Sbornik. Mathematics, Tome 21 (1973) no. 4, pp. 619-639. http://geodesic.mathdoc.fr/item/SM_1973_21_4_a9/
[1] I. I. Privalov, Granichnye svoistva analiticheskikh funktsii, Gostekhizdat, Moskva–Leningrad, 1950
[2] A. Korányi, “Harmonic functions on Hermitian hyperbolic space”, Trans. Amer. Math. Soc., 135 (1969), 507–516 | DOI | MR | Zbl
[3] E. M. Stein, “An analogues of Fatou's theorem and estimates for maximal functions”, Geometrie of Homogeneous bounded domains, 1968, 291–306 | MR
[4] A. Korányi, E. M. Stein, “Fatou's theorem for generalized halfplanes”, Ann. Scuola Norm. Super, Pisa, 22 (1968), 107–112 | MR | Zbl
[5] E. M. Stein, “Boundary values of holomorphic functions”, Bull. Amer. Math. Soc., 76 (1970), 1292–1296 | DOI | MR | Zbl
[6] Boundary behavior of holomorphic functions of several complex variables, Princeton, 1972
[7] M. A. Evgrafov, Analiticheskie funktsii, izd-vo «Nauka», Moskva, 1968 | MR
[8] H. Federer, Geometric Measure Theory, Springer-Verlag, 1969 | MR
[9] L. Hörmander, “$L^p$-estimates for (pluri-) subharmonic functions”, Math. Scand., 20 (1967), 65–78 | MR | Zbl
[10] A. M. Davie, B. K. Øksendal, “Peak interpolation sets for some algebras of holomorphic functions”, Pacific J. Math., 41 (1972), 81–87 | MR
[11] I. I. Privalov, P. I. Kuznetsov, “Granichnye zadachi i razlichnye klassy garmonicheskikh i subgarmonicheskikh funktsii, opredelennye v proizvolnykh oblastyakh”, Matem. sb., 6 (48) (1939), 345–376