The rate of decrease for large time of the solution of a~Sobolev system with viscosity
Sbornik. Mathematics, Tome 21 (1973) no. 4, pp. 584-606

Voir la notice de l'article provenant de la source Math-Net.Ru

The rate of decrease for large time, uniform with respect to $x\in E_2$, of the solution of the Cauchy problem for a linearized system governing the motion of a rotating viscous fluid is obtained for the case of two space variables. The law of decay obtained is $O(1/t^{3/2})$ for the velocity vector $\mathbf v(x,t)$ and $O(1/t)$ for the pressure function $P(x,t)$; it describes the rate of decay of the vorticity in a viscous fluid for the linear formulation considered here. Bibliography: 8 titles.
@article{SM_1973_21_4_a7,
     author = {V. N. Maslennikova},
     title = {The rate of decrease for large time of the solution of {a~Sobolev} system with viscosity},
     journal = {Sbornik. Mathematics},
     pages = {584--606},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_21_4_a7/}
}
TY  - JOUR
AU  - V. N. Maslennikova
TI  - The rate of decrease for large time of the solution of a~Sobolev system with viscosity
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 584
EP  - 606
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_21_4_a7/
LA  - en
ID  - SM_1973_21_4_a7
ER  - 
%0 Journal Article
%A V. N. Maslennikova
%T The rate of decrease for large time of the solution of a~Sobolev system with viscosity
%J Sbornik. Mathematics
%D 1973
%P 584-606
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_21_4_a7/
%G en
%F SM_1973_21_4_a7
V. N. Maslennikova. The rate of decrease for large time of the solution of a~Sobolev system with viscosity. Sbornik. Mathematics, Tome 21 (1973) no. 4, pp. 584-606. http://geodesic.mathdoc.fr/item/SM_1973_21_4_a7/