The rate of decrease for large time of the solution of a Sobolev system with viscosity
Sbornik. Mathematics, Tome 21 (1973) no. 4, pp. 584-606 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The rate of decrease for large time, uniform with respect to $x\in E_2$, of the solution of the Cauchy problem for a linearized system governing the motion of a rotating viscous fluid is obtained for the case of two space variables. The law of decay obtained is $O(1/t^{3/2})$ for the velocity vector $\mathbf v(x,t)$ and $O(1/t)$ for the pressure function $P(x,t)$; it describes the rate of decay of the vorticity in a viscous fluid for the linear formulation considered here. Bibliography: 8 titles.
@article{SM_1973_21_4_a7,
     author = {V. N. Maslennikova},
     title = {The rate of decrease for large time of the solution of {a~Sobolev} system with viscosity},
     journal = {Sbornik. Mathematics},
     pages = {584--606},
     year = {1973},
     volume = {21},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_21_4_a7/}
}
TY  - JOUR
AU  - V. N. Maslennikova
TI  - The rate of decrease for large time of the solution of a Sobolev system with viscosity
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 584
EP  - 606
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1973_21_4_a7/
LA  - en
ID  - SM_1973_21_4_a7
ER  - 
%0 Journal Article
%A V. N. Maslennikova
%T The rate of decrease for large time of the solution of a Sobolev system with viscosity
%J Sbornik. Mathematics
%D 1973
%P 584-606
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1973_21_4_a7/
%G en
%F SM_1973_21_4_a7
V. N. Maslennikova. The rate of decrease for large time of the solution of a Sobolev system with viscosity. Sbornik. Mathematics, Tome 21 (1973) no. 4, pp. 584-606. http://geodesic.mathdoc.fr/item/SM_1973_21_4_a7/

[1] V. N. Maslennikova, “O skorosti zatukhaniya vikhrya v vyazkoi zhidkosti”, Trudy matem. in-ta im. V. A. Steklova, CXXVI (1973)

[2] S. L. Sobolev, “Ob odnoi novoi zadache matematicheskoi fiziki”, Izv. AN SSSR, seriya matem., 18 (1954), 3–50 | MR | Zbl

[3] R. A. Aleksandryan, “Spektralnye svoistva operatorov, porozhdennykh sistemami differentsialnykh uravnenii tipa S. L. Soboleva”, Trudy Mosk. matem. ob-va, IX (1960), 455–505

[4] T. I. Zelenyak, Izbrannye voprosy kachestvennoi teorii uravnenii s chastnymi proizvodnymi, izd-vo NGU, Novosibirsk, 1970

[5] N. Ya. Sonin, Issledovaniya o tsilindricheskikh funktsiyakh i spetsialnykh polinomakh, Gostekhizdat, Moskva, 1954

[6] G. Beitman, A. Erdeii, Tablitsy integralnykh preobrazovanii, t. 1, izd-vo «Nauka», Moskva, 1969

[7] M. A. Lavrentev, B. V. Shabat, Metody teorii funktsii kompleksnogo peremennogo, Fizmatgiz, Moskva, 1958

[8] V. N. Maslennikova, “Otsenki v $L_p$ i asimptotika pri $t\to\infty$ resheniya zadachi Koshi dlya sistemy S. L. Soboleva”, Trudy matem. in-ta im. V. A. Steklova, CIII (1968)