Lie groups which act transitively on simply-connected compact manifolds
Sbornik. Mathematics, Tome 21 (1973) no. 4, pp. 558-564 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $G$ be a connected Lie group and $H$ a closed subgroup such that the homogeneous space $M=G/H$ is simply connected and compact, and such that $G$ acts locally effectively on $M$. In this paper we determine the structure of the radical of $G$. In the case that $G$ is semisimple we describe the construction of a locally effective extension $(G',H')$ of the pair $(G,H)$ for which $G$ is a maximal semisimple subgroup of $G'$. Bibliography: 4 titles.
@article{SM_1973_21_4_a5,
     author = {E. Ya. Vishik},
     title = {Lie groups which act transitively on simply-connected compact manifolds},
     journal = {Sbornik. Mathematics},
     pages = {558--564},
     year = {1973},
     volume = {21},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_21_4_a5/}
}
TY  - JOUR
AU  - E. Ya. Vishik
TI  - Lie groups which act transitively on simply-connected compact manifolds
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 558
EP  - 564
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1973_21_4_a5/
LA  - en
ID  - SM_1973_21_4_a5
ER  - 
%0 Journal Article
%A E. Ya. Vishik
%T Lie groups which act transitively on simply-connected compact manifolds
%J Sbornik. Mathematics
%D 1973
%P 558-564
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1973_21_4_a5/
%G en
%F SM_1973_21_4_a5
E. Ya. Vishik. Lie groups which act transitively on simply-connected compact manifolds. Sbornik. Mathematics, Tome 21 (1973) no. 4, pp. 558-564. http://geodesic.mathdoc.fr/item/SM_1973_21_4_a5/

[1] A. M. Lukatskii, “Sfericheskie funktsii na $G$-prostranstvakh nekompaktnykh grupp Li”, Uspekhi matem. nauk, XXVI:5 (151) (1971), 212–213

[2] A. L. Onischik, “O gruppakh Li, tranzitivnykh na kompaktnykh mnogoobraziyakh”, Matem. sb., 71 (113) (1966), 483–494 | Zbl

[3] A. L. Onischik, “O gruppakh Li, tranzitivnykh na kompaktnykh mnogoobraziyakh”, Matem. sb., 75 (117) (1968), 255–263 | Zbl

[4] Shevalle, Teoriya grupp Li, t. 3, IL, Moskva, 1958