On~the compressive radical of semigroups
Sbornik. Mathematics, Tome 21 (1973) no. 4, pp. 523-534
Voir la notice de l'article provenant de la source Math-Net.Ru
A centered right $S$-polygon (synonyms: $S$-operand, $S$-system) $A$ is called right compressive if $AS\ne0$ and $\alpha a=\alpha b\to\alpha=0\vee(a,b)\in(\operatorname{Ker}A)_S$ and leftt compressive if $AS\ne0$ and $\alpha a=\beta a\to\alpha=\beta\vee Aa=0$. Here $(\operatorname{Ker}A)_S$ is the congruence on the semigroup $S$ called the kernel of the $S$-polygon $A$ which is defined as follows: $(a,b)\in(\operatorname{Ker}A)_S\leftrightarrow(\forall\,\alpha\in A)(\alpha a=\alpha b)$.
The intersection of the kernels of all right (left) compressive $S$-polygons is called the right (left) compressive radical of $S$. In this paper we study compressively semisimple and compressively radical semigroups.
Bibliography: 11 titles.
@article{SM_1973_21_4_a2,
author = {E. N. Roiz},
title = {On~the compressive radical of semigroups},
journal = {Sbornik. Mathematics},
pages = {523--534},
publisher = {mathdoc},
volume = {21},
number = {4},
year = {1973},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1973_21_4_a2/}
}
E. N. Roiz. On~the compressive radical of semigroups. Sbornik. Mathematics, Tome 21 (1973) no. 4, pp. 523-534. http://geodesic.mathdoc.fr/item/SM_1973_21_4_a2/