On the compressive radical of semigroups
Sbornik. Mathematics, Tome 21 (1973) no. 4, pp. 523-534 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A centered right $S$-polygon (synonyms: $S$-operand, $S$-system) $A$ is called right compressive if $AS\ne0$ and $\alpha a=\alpha b\to\alpha=0\vee(a,b)\in(\operatorname{Ker}A)_S$ and leftt compressive if $AS\ne0$ and $\alpha a=\beta a\to\alpha=\beta\vee Aa=0$. Here $(\operatorname{Ker}A)_S$ is the congruence on the semigroup $S$ called the kernel of the $S$-polygon $A$ which is defined as follows: $(a,b)\in(\operatorname{Ker}A)_S\leftrightarrow(\forall\,\alpha\in A)(\alpha a=\alpha b)$. The intersection of the kernels of all right (left) compressive $S$-polygons is called the right (left) compressive radical of $S$. In this paper we study compressively semisimple and compressively radical semigroups. Bibliography: 11 titles.
@article{SM_1973_21_4_a2,
     author = {E. N. Roiz},
     title = {On~the compressive radical of semigroups},
     journal = {Sbornik. Mathematics},
     pages = {523--534},
     year = {1973},
     volume = {21},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_21_4_a2/}
}
TY  - JOUR
AU  - E. N. Roiz
TI  - On the compressive radical of semigroups
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 523
EP  - 534
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1973_21_4_a2/
LA  - en
ID  - SM_1973_21_4_a2
ER  - 
%0 Journal Article
%A E. N. Roiz
%T On the compressive radical of semigroups
%J Sbornik. Mathematics
%D 1973
%P 523-534
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1973_21_4_a2/
%G en
%F SM_1973_21_4_a2
E. N. Roiz. On the compressive radical of semigroups. Sbornik. Mathematics, Tome 21 (1973) no. 4, pp. 523-534. http://geodesic.mathdoc.fr/item/SM_1973_21_4_a2/

[1] V. A. Andrunakievich, Yu. M. Ryabukhin, “Spetsialnye moduli i spetsialnye radikaly”, DAN SSSR, 147:6 (1962), 1274–1277 | Zbl

[2] V. A. Andrunakievich, Yu. M. Ryabukhin, “Moduli i radikaly”, DAN SSSR, 156:5 (1964), 991–994 | Zbl

[3] A. Klifford, G. Preston, Algebraicheskaya teoriya polugrupp, izd-vo «Mir», Moskva, 1972

[4] L. A. Skornyakov, “O radikalakh $\Omega$-kolets”, Izbrannye voprosy algebry i logiki, Novosibirsk, 1973, 283–299 | Zbl

[5] M. Petrich, “The maximal semilattice decomposition of a semigroup”, Math. Z., 85:1 (1964), 68–82 | DOI | MR | Zbl

[6] H. Hoehnke, “Über das untere und obere Radikal einer Halbgruppe”, Math. Z., 89:4 (1965), 300–311 | DOI | MR | Zbl

[7] B. M. Schein, “Stationary subsets, stabilizers and transitive representations of semigroups”, Rozpr. Math., 77, Warszawa, 1970 | MR | Zbl

[8] B. M. Shain, “O nekotorykh klassakh polugrupp binarnykh otnoshenii”, Sib. matem. zh., 6:3 (1965), 616–635

[9] B. M. Shain, “K teorii restriktivnykh polugrupp”, Izv. VUZov, matematika, 1963, no. 2, 152–154 | MR | Zbl

[10] B. M. Shain, “Teoriya radikalov polugrupp”, VIII Vses. kollok. obsch. alg., Rezyume soobsch. i dokl., Riga, 1967

[11] B. M. Schein, “Homomorphisms and subdirect decompositions of semigroups”, Pacific J. Math., 17:3 (1966), 529–549 | MR