On~the compressive radical of semigroups
Sbornik. Mathematics, Tome 21 (1973) no. 4, pp. 523-534

Voir la notice de l'article provenant de la source Math-Net.Ru

A centered right $S$-polygon (synonyms: $S$-operand, $S$-system) $A$ is called right compressive if $AS\ne0$ and $\alpha a=\alpha b\to\alpha=0\vee(a,b)\in(\operatorname{Ker}A)_S$ and leftt compressive if $AS\ne0$ and $\alpha a=\beta a\to\alpha=\beta\vee Aa=0$. Here $(\operatorname{Ker}A)_S$ is the congruence on the semigroup $S$ called the kernel of the $S$-polygon $A$ which is defined as follows: $(a,b)\in(\operatorname{Ker}A)_S\leftrightarrow(\forall\,\alpha\in A)(\alpha a=\alpha b)$. The intersection of the kernels of all right (left) compressive $S$-polygons is called the right (left) compressive radical of $S$. In this paper we study compressively semisimple and compressively radical semigroups. Bibliography: 11 titles.
@article{SM_1973_21_4_a2,
     author = {E. N. Roiz},
     title = {On~the compressive radical of semigroups},
     journal = {Sbornik. Mathematics},
     pages = {523--534},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_21_4_a2/}
}
TY  - JOUR
AU  - E. N. Roiz
TI  - On~the compressive radical of semigroups
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 523
EP  - 534
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_21_4_a2/
LA  - en
ID  - SM_1973_21_4_a2
ER  - 
%0 Journal Article
%A E. N. Roiz
%T On~the compressive radical of semigroups
%J Sbornik. Mathematics
%D 1973
%P 523-534
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_21_4_a2/
%G en
%F SM_1973_21_4_a2
E. N. Roiz. On~the compressive radical of semigroups. Sbornik. Mathematics, Tome 21 (1973) no. 4, pp. 523-534. http://geodesic.mathdoc.fr/item/SM_1973_21_4_a2/