More on quasi-Frobenius rings
Sbornik. Mathematics, Tome 21 (1973) no. 4, pp. 511-522 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $R$ be a ring and $J$ its Jacobson radical. Let us set $J^1=J$, $J^\alpha=JJ^{\alpha-1}$, and $J^\alpha=\bigcap_{\beta<\alpha}J^\beta$ if $\alpha$ is a limit ordinal. We call a ring an annihilating ring if the left (right) annihilator of the right (left) annihilator of an arbitrary left (right) ideal $I$ is $I$ itself. We prove that a ring $R$ is quasi-Frobenius if and only if it is a left self-injective annihilating ring and $J^\alpha=0$ for some transfinite $\alpha$. Bibliography: 15 titles.
@article{SM_1973_21_4_a1,
     author = {L. A. Skornyakov},
     title = {More on {quasi-Frobenius} rings},
     journal = {Sbornik. Mathematics},
     pages = {511--522},
     year = {1973},
     volume = {21},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_21_4_a1/}
}
TY  - JOUR
AU  - L. A. Skornyakov
TI  - More on quasi-Frobenius rings
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 511
EP  - 522
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1973_21_4_a1/
LA  - en
ID  - SM_1973_21_4_a1
ER  - 
%0 Journal Article
%A L. A. Skornyakov
%T More on quasi-Frobenius rings
%J Sbornik. Mathematics
%D 1973
%P 511-522
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1973_21_4_a1/
%G en
%F SM_1973_21_4_a1
L. A. Skornyakov. More on quasi-Frobenius rings. Sbornik. Mathematics, Tome 21 (1973) no. 4, pp. 511-522. http://geodesic.mathdoc.fr/item/SM_1973_21_4_a1/

[1] N. Dzhekobson, Stroenie kolets, IL, Moskva, 1961

[2] L. A. Koifman, “O koobrazuyuschikh samoin'ektivnykh koltsakh”, Algebra i logika, 9:1 (1970), 52–66 | MR | Zbl

[3] Ch. Kertis, I. Rainer, Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, izd-vo «Nauka», Moskva, 1969 | MR

[4] I. Lambek, Koltsa i moduli, izd-vo «Mir», Moskva, 1971 | MR

[5] R. Sikorskii, Bulevy algebry, izd-vo «Mir», Moskva, 1969 | MR

[6] L. A. Skornyakov, “O modulyakh s avtodualnoi strukturoi podmodulei”, Sib. matem. zh., 11:2 (1960), 238–241

[7] G. Azumaya, “Completely faithful modules and self-injective rings”, Nagoya Math. J., 27:2 (1966), 697–708 | MR | Zbl

[8] J.-E. Björk, “Rings satisfying certain chain conditions”, J. reine und angew. Math., 245 (1970), 63–73 | MR | Zbl

[9] S. Eilenberg, T. Nakayama, “On the dimension of modules and algebras. II: Frobenius algebra and quasi-Frobenius rings”, Nagoya Math. J., 9 (1955), 1–16 | MR | Zbl

[10] C. Faith, “Rings with ascending conditions on annihilators”, Nagoya Math. J., 27:1 (1966), 179–191 | MR | Zbl

[11] C. Faith, Y. Utumi, “Quasi-injective modules and their endomorphism rings”, Arch. Math., 15:3 (1964), 166–174 | DOI | MR

[12] C. Faith, E. Walker, “Direct sum representations of injective modules”, J. Algebra, 5:2 (1967), 203–221 | DOI | MR | Zbl

[13] T. Katô, “Self-injective rings”, Tôhoku Math. J., 19:4 (1967), 485–495 | DOI | MR | Zbl

[14] L. Levy, “Commutative rings whose homomorphic images are self-injective”, Pacific. J. Math., 18:1 (1966), 149–153 | MR | Zbl

[15] Y. Utumi, “Self-injective rings”, J. Algebra, 6:1 (1967), 56–64 | DOI | MR | Zbl