More on quasi-Frobenius rings
Sbornik. Mathematics, Tome 21 (1973) no. 4, pp. 511-522

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a ring and $J$ its Jacobson radical. Let us set $J^1=J$, $J^\alpha=JJ^{\alpha-1}$, and $J^\alpha=\bigcap_{\beta\alpha}J^\beta$ if $\alpha$ is a limit ordinal. We call a ring an annihilating ring if the left (right) annihilator of the right (left) annihilator of an arbitrary left (right) ideal $I$ is $I$ itself. We prove that a ring $R$ is quasi-Frobenius if and only if it is a left self-injective annihilating ring and $J^\alpha=0$ for some transfinite $\alpha$. Bibliography: 15 titles.
@article{SM_1973_21_4_a1,
     author = {L. A. Skornyakov},
     title = {More on {quasi-Frobenius} rings},
     journal = {Sbornik. Mathematics},
     pages = {511--522},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_21_4_a1/}
}
TY  - JOUR
AU  - L. A. Skornyakov
TI  - More on quasi-Frobenius rings
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 511
EP  - 522
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_21_4_a1/
LA  - en
ID  - SM_1973_21_4_a1
ER  - 
%0 Journal Article
%A L. A. Skornyakov
%T More on quasi-Frobenius rings
%J Sbornik. Mathematics
%D 1973
%P 511-522
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_21_4_a1/
%G en
%F SM_1973_21_4_a1
L. A. Skornyakov. More on quasi-Frobenius rings. Sbornik. Mathematics, Tome 21 (1973) no. 4, pp. 511-522. http://geodesic.mathdoc.fr/item/SM_1973_21_4_a1/