More on quasi-Frobenius rings
Sbornik. Mathematics, Tome 21 (1973) no. 4, pp. 511-522
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $R$ be a ring and $J$ its Jacobson radical. Let us set $J^1=J$, $J^\alpha=JJ^{\alpha-1}$, and $J^\alpha=\bigcap_{\beta\alpha}J^\beta$ if $\alpha$ is a limit ordinal. We call a ring an annihilating ring if the left (right) annihilator of the right (left) annihilator of an arbitrary left (right) ideal $I$ is $I$ itself. We prove that a ring $R$ is quasi-Frobenius if and only if it is a left self-injective annihilating ring and $J^\alpha=0$ for some transfinite $\alpha$.
Bibliography: 15 titles.
@article{SM_1973_21_4_a1,
author = {L. A. Skornyakov},
title = {More on {quasi-Frobenius} rings},
journal = {Sbornik. Mathematics},
pages = {511--522},
publisher = {mathdoc},
volume = {21},
number = {4},
year = {1973},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1973_21_4_a1/}
}
L. A. Skornyakov. More on quasi-Frobenius rings. Sbornik. Mathematics, Tome 21 (1973) no. 4, pp. 511-522. http://geodesic.mathdoc.fr/item/SM_1973_21_4_a1/