Random partitions of sets with marked subsets
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 21 (1973) no. 3, pp. 485-498
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We are given a uniform probability distribution on the partitions of a set $X$ of $m$ elements. For each realization of the random partition we define a random process of drawing marks: every subset of cardinality $k$ receives a mark with probability $p_k$. We find expressions for exact distributions of the number of marked subsets of cardinality $l$, the overall number of marked subsets and the number of elements in them. For certain concrete values $p_k=p_k(m)$, $k=1,2,\dots,$ we obtain the limit distributions of these random variables as $m\to\infty$.
Bibliography: 8 titles.
			
            
            
            
          
        
      @article{SM_1973_21_3_a9,
     author = {V. N. Sachkov},
     title = {Random partitions of sets with marked subsets},
     journal = {Sbornik. Mathematics},
     pages = {485--498},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_21_3_a9/}
}
                      
                      
                    V. N. Sachkov. Random partitions of sets with marked subsets. Sbornik. Mathematics, Tome 21 (1973) no. 3, pp. 485-498. http://geodesic.mathdoc.fr/item/SM_1973_21_3_a9/
