Maximum height of~arbitrary classes of $(0,1)$-matrices and some of its applications
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 21 (1973) no. 3, pp. 467-484
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			An upper estimate obtained earlier by the author for the maximum height $\overline\varepsilon$ of certain $(0,1)$-matrices (RZhMat., 1968, 8V222) is generalized to arbitrary classes of matrices. It is shown that under certain natural conditions $\overline\varepsilon/N\leqslant\ln n/n+O(1/n)$, $n\to\infty$, where $N$ is the number of columns in the matrix and $n$ is the maximum number of ones in a column. Let $\overline\varepsilon(k,n,N)$ be the maximum height of the class of matrices with $N$ columns, $k$ ones in each row and $n$ ones in each column. It is proved that
$\overline\varepsilon(n,n,N)\geqslant2\bigl[\frac N{n+1}\bigr]$, $\overline\varepsilon(2,3,N)=\bigl[\frac35N\bigr]$, $\overlinevarepsilon(2,n,N)=\bigl[\frac23N\bigr]$ ($n$ even);
$\bigl[\frac35N\bigr]\leqslant\overline\varepsilon(2,n,N)\leqslant\bigl[\frac{2n-1}{3n-1}N\bigr]$ ($n$ odd); from this follows estimates for some constants in graph theory.
Bibliography: 9 titles.
			
            
            
            
          
        
      @article{SM_1973_21_3_a8,
     author = {V. E. Tarakanov},
     title = {Maximum height of~arbitrary classes of $(0,1)$-matrices and some of its applications},
     journal = {Sbornik. Mathematics},
     pages = {467--484},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_21_3_a8/}
}
                      
                      
                    V. E. Tarakanov. Maximum height of~arbitrary classes of $(0,1)$-matrices and some of its applications. Sbornik. Mathematics, Tome 21 (1973) no. 3, pp. 467-484. http://geodesic.mathdoc.fr/item/SM_1973_21_3_a8/
