On~the uniqueness of an expansion in generalized eigenfunctions of a~differential operator
Sbornik. Mathematics, Tome 21 (1973) no. 3, pp. 455-466
Voir la notice de l'article provenant de la source Math-Net.Ru
The space $\mathscr E_\rho$ of the entire functions of order $\rho$ ($1\rho\infty$) with the usual topology and the operator $\mathscr L$, induced by a differential operation $l[y]=y^n+p_{n-2}(z)y^{n-2}+\dots+p_0(z)y$, $n>1$, and “boundary” conditions $F_i[y]=0$
($i=1,\dots,n$), where the $F_i$ are linear functionals on $\mathscr E_\rho$. Conditions are indicated under which the formal expansion $f\sim-\Sigma_\lambda\operatorname{Res}(\mathscr L-\lambda E)^{-1}f$ uniquely determines an element $f\in\mathscr E_\rho$. As a corollary it is established that if $\Delta(\lambda)=\Sigma c_k\lambda^k\in\mathscr E_\mu$, $\mu>1$, has an infinite number of zeros and $f(z)\in\mathscr E_\rho$, $\rho\mu(\mu-1)$, then $f(z)\equiv0$ whenever
$$
\sum^\infty_{k=1}\frac{c_k(\lambda^{k-1}f(0)+\dots+f^{(k-1)}(0))}{\Delta(\lambda)}
$$
is an entire function.
Bibliography: 10 titles.
@article{SM_1973_21_3_a7,
author = {V. A. Tkachenko},
title = {On~the uniqueness of an expansion in generalized eigenfunctions of a~differential operator},
journal = {Sbornik. Mathematics},
pages = {455--466},
publisher = {mathdoc},
volume = {21},
number = {3},
year = {1973},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1973_21_3_a7/}
}
V. A. Tkachenko. On~the uniqueness of an expansion in generalized eigenfunctions of a~differential operator. Sbornik. Mathematics, Tome 21 (1973) no. 3, pp. 455-466. http://geodesic.mathdoc.fr/item/SM_1973_21_3_a7/