@article{SM_1973_21_3_a6,
author = {Yu. A. Aminov},
title = {The exterior diameter of an immersed {Riemannian} manifold},
journal = {Sbornik. Mathematics},
pages = {449--454},
year = {1973},
volume = {21},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1973_21_3_a6/}
}
Yu. A. Aminov. The exterior diameter of an immersed Riemannian manifold. Sbornik. Mathematics, Tome 21 (1973) no. 3, pp. 449-454. http://geodesic.mathdoc.fr/item/SM_1973_21_3_a6/
[1] Dzh. Nesh, “Problema vlozhenii dlya rimanovykh mnogoobrazii”, Uspekhi matem. nauk, XXVI:4 (160) (1971), 173–216
[2] S. S. Chern, “The geometry of $G$-structures”, Bull. Amer. Math. Soc., 72:2 (1966), 167–219 | DOI | MR | Zbl
[3] R. Osserman, “Minimalnye poverkhnosti”, Uspekhi matem. nauk, XXII:4 (136) (1967), 55–136 | MR
[4] Dzh. Milnor, Teoriya Morsa, izd-vo «Mir», Moskva, 1965 | MR
[5] L. P. Eizenkhart, Rimanova geometriya, IL, Moskva, 1948
[6] Yu. D. Burago, Neravenstva izoperimetricheskogo tipa v teorii poverkhnostei ogranichennoi vneshnei krivizny, Zapiski nauchnykh sekhminarov LOMI, 10, 1968 | MR | Zbl
[7] Yu. D. Burago, “Otsenka snizu prostranstvennogo diametra poverkhnosti cherez ee vnutrennii radius i kriviznu”, Matem. sb., 86 (128) (1971), 409–418 | MR | Zbl
[8] A. L. Verner, “Neogranichennost giperbolicheskogo roga v evklidovom prostranstve”, Sib. matem. zh., 11:1 (1970), 20–29 | MR | Zbl
[9] Yu. A. Aminov, “O vneshnem diametre poverkhnosti otritsatelnoi krivizny”, Ukr. geom. sb., 1973, no. 13, 3–8 | MR
[10] Yu. A. Aminov, “O dvumernykh metrikakh otritsatelnoi krivizny”, Ukr. geom. sb., 1973, no. 13, 9–14 | MR