The exterior diameter of an immersed Riemannian manifold
Sbornik. Mathematics, Tome 21 (1973) no. 3, pp. 449-454 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we establish a general lower bound for the radius of the sphere containing a complete regular Riemannian manifold $F^n$ in Euclidean space $E^N$, $N>n$. Bibliography: 10 titles.
@article{SM_1973_21_3_a6,
     author = {Yu. A. Aminov},
     title = {The exterior diameter of an immersed {Riemannian} manifold},
     journal = {Sbornik. Mathematics},
     pages = {449--454},
     year = {1973},
     volume = {21},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_21_3_a6/}
}
TY  - JOUR
AU  - Yu. A. Aminov
TI  - The exterior diameter of an immersed Riemannian manifold
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 449
EP  - 454
VL  - 21
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1973_21_3_a6/
LA  - en
ID  - SM_1973_21_3_a6
ER  - 
%0 Journal Article
%A Yu. A. Aminov
%T The exterior diameter of an immersed Riemannian manifold
%J Sbornik. Mathematics
%D 1973
%P 449-454
%V 21
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1973_21_3_a6/
%G en
%F SM_1973_21_3_a6
Yu. A. Aminov. The exterior diameter of an immersed Riemannian manifold. Sbornik. Mathematics, Tome 21 (1973) no. 3, pp. 449-454. http://geodesic.mathdoc.fr/item/SM_1973_21_3_a6/

[1] Dzh. Nesh, “Problema vlozhenii dlya rimanovykh mnogoobrazii”, Uspekhi matem. nauk, XXVI:4 (160) (1971), 173–216

[2] S. S. Chern, “The geometry of $G$-structures”, Bull. Amer. Math. Soc., 72:2 (1966), 167–219 | DOI | MR | Zbl

[3] R. Osserman, “Minimalnye poverkhnosti”, Uspekhi matem. nauk, XXII:4 (136) (1967), 55–136 | MR

[4] Dzh. Milnor, Teoriya Morsa, izd-vo «Mir», Moskva, 1965 | MR

[5] L. P. Eizenkhart, Rimanova geometriya, IL, Moskva, 1948

[6] Yu. D. Burago, Neravenstva izoperimetricheskogo tipa v teorii poverkhnostei ogranichennoi vneshnei krivizny, Zapiski nauchnykh sekhminarov LOMI, 10, 1968 | MR | Zbl

[7] Yu. D. Burago, “Otsenka snizu prostranstvennogo diametra poverkhnosti cherez ee vnutrennii radius i kriviznu”, Matem. sb., 86 (128) (1971), 409–418 | MR | Zbl

[8] A. L. Verner, “Neogranichennost giperbolicheskogo roga v evklidovom prostranstve”, Sib. matem. zh., 11:1 (1970), 20–29 | MR | Zbl

[9] Yu. A. Aminov, “O vneshnem diametre poverkhnosti otritsatelnoi krivizny”, Ukr. geom. sb., 1973, no. 13, 3–8 | MR

[10] Yu. A. Aminov, “O dvumernykh metrikakh otritsatelnoi krivizny”, Ukr. geom. sb., 1973, no. 13, 9–14 | MR