On the Dirichlet problem for an elliptic operator in a cylindrical domain of Hilbert space
Sbornik. Mathematics, Tome 21 (1973) no. 3, pp. 423-438 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A special class of elliptic operators with an infinite number of independent variables is introduced in the paper. The Dirichlet problem is considered in a cylindrical domain of Hilbert space for an operator belonging to this class. The investigation is based on the construction of a functional integral of double layer potential type. Bibliography: 11 titles.
@article{SM_1973_21_3_a4,
     author = {N. N. Frolov},
     title = {On~the {Dirichlet} problem for an elliptic operator in a~cylindrical domain of {Hilbert} space},
     journal = {Sbornik. Mathematics},
     pages = {423--438},
     year = {1973},
     volume = {21},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_21_3_a4/}
}
TY  - JOUR
AU  - N. N. Frolov
TI  - On the Dirichlet problem for an elliptic operator in a cylindrical domain of Hilbert space
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 423
EP  - 438
VL  - 21
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1973_21_3_a4/
LA  - en
ID  - SM_1973_21_3_a4
ER  - 
%0 Journal Article
%A N. N. Frolov
%T On the Dirichlet problem for an elliptic operator in a cylindrical domain of Hilbert space
%J Sbornik. Mathematics
%D 1973
%P 423-438
%V 21
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1973_21_3_a4/
%G en
%F SM_1973_21_3_a4
N. N. Frolov. On the Dirichlet problem for an elliptic operator in a cylindrical domain of Hilbert space. Sbornik. Mathematics, Tome 21 (1973) no. 3, pp. 423-438. http://geodesic.mathdoc.fr/item/SM_1973_21_3_a4/

[1] Yu. L. Daletskii, “Beskonechnomernye elllipticheskie operatory i svyazannye s nimi parabolicheskie uravneniya”, Uspekhi matem. nauk, XXII:4 (136) (1971), 3–54

[2] M. Ann. Piech, “A fundamental solution of the Parabolic equation on HiLbert space”, J. funct. analysis, 3:1 (1969), 85–114 | DOI | MR

[3] P. M. Blekher, M. I. Vishik, “Ob odnom klasse psevdodifferentsialnykh operatorov s beskonechnym chislom peremennykh i ikh prilozheniyakh”, Matem. sb., 86 (128) (1971), 446–494 | Zbl

[4] M. I. Vishik, “Parametriks ellipticheskikh operatorov s beskonechnym chislom nezavisimykh peremennykh”, Uspekhi matem. nauk, 2 (158) (1971), 155–174 | Zbl

[5] L. Gross, “Potential theory on Hilbert Space”, J. funct. analysis, 1:1 (1967), 123–181 | DOI | MR | Zbl

[6] N. N. Frolov, “Teoremy vlozheniya dlya funktsii schetnogo chisla peremennykh i ikh prilozheniya k zadache Dirikhle”, DAN SSSR, 203:1 (1972), 39–42 | Zbl

[7] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, izd-vo «Nauka», Moskva, 1967

[8] S. D. Eidelman, Parabolicheskie sistemy, izd-vo «Nauka», Moskva, 1964 | MR

[9] S. G. Mikhlin, Kurs matematicheskoi fiziki, izd-vo «Nauka», Moskva, 1968 | MR

[10] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, izd-vo «Nauka», Moskva, 1964 | MR

[11] M. I. Vishik, A. V. Marchenko, “Kraevye zadachi dlya ellipticheskikh i parabolicheskikh operatorov vtorogo poryadka na beskonechnomernykh mnogoobraziyakh s kraem”, Matem. sb., 90 (132) (1973), 331–337