Some questions of spectral synthesis on spheres
Sbornik. Mathematics, Tome 21 (1973) no. 2, pp. 317-338

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers the Banach algebra $L^1(R^n)$ with the usual norm and convolution as multiplication. A characterization is given for closed ideals of $L^1(R^n)$ which are rotation invariant and have $S^{n-1}$ as spectrum, in terms of annihilators of certain collections of pseudomeasures. The main result of the paper is connected with a construction which yields an uncountable chain of closed ideals intermediate between neighboring invariant closed ideals with spectrum $S^{n-1}$. This construction associates an ideal $I(E)$ with a closed subset $E\subset S^{n-1}$. It is shown that if $\operatorname{int}E_1\neq\operatorname{int}E_2$ then $I(E_1)\neq I(E_2)$. Another result is the lack of a continuous projection from the largest to the smallest ideal when $n =3$, and when $n>3$, from an invariant ideal onto the neighboring smaller invariant ideal. A certain algebra of functions on the sphere which arises naturally in the construction of the intermediate ideals is also studied. Bibliography: 18 titles.
@article{SM_1973_21_2_a9,
     author = {V. F. Osipov},
     title = {Some questions of spectral synthesis on spheres},
     journal = {Sbornik. Mathematics},
     pages = {317--338},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_21_2_a9/}
}
TY  - JOUR
AU  - V. F. Osipov
TI  - Some questions of spectral synthesis on spheres
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 317
EP  - 338
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_21_2_a9/
LA  - en
ID  - SM_1973_21_2_a9
ER  - 
%0 Journal Article
%A V. F. Osipov
%T Some questions of spectral synthesis on spheres
%J Sbornik. Mathematics
%D 1973
%P 317-338
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_21_2_a9/
%G en
%F SM_1973_21_2_a9
V. F. Osipov. Some questions of spectral synthesis on spheres. Sbornik. Mathematics, Tome 21 (1973) no. 2, pp. 317-338. http://geodesic.mathdoc.fr/item/SM_1973_21_2_a9/