Homology and cohomology of sets and their neighborhoods
Sbornik. Mathematics, Tome 21 (1973) no. 2, pp. 303-315 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work the author investigates the relationship between the homology of an inverse limit of spaces and the limit of the homology of the spaces (for an exact homology theory), and also the relationship of the cohomology of limits of certain pairs of spaces to the limit of the cohomology of the pairs. Applications of the results of these investigations are presented. Bibliography: 11 titles.
@article{SM_1973_21_2_a8,
     author = {V. G. Miryuk},
     title = {Homology and cohomology of sets and their neighborhoods},
     journal = {Sbornik. Mathematics},
     pages = {303--315},
     year = {1973},
     volume = {21},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_21_2_a8/}
}
TY  - JOUR
AU  - V. G. Miryuk
TI  - Homology and cohomology of sets and their neighborhoods
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 303
EP  - 315
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1973_21_2_a8/
LA  - en
ID  - SM_1973_21_2_a8
ER  - 
%0 Journal Article
%A V. G. Miryuk
%T Homology and cohomology of sets and their neighborhoods
%J Sbornik. Mathematics
%D 1973
%P 303-315
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1973_21_2_a8/
%G en
%F SM_1973_21_2_a8
V. G. Miryuk. Homology and cohomology of sets and their neighborhoods. Sbornik. Mathematics, Tome 21 (1973) no. 2, pp. 303-315. http://geodesic.mathdoc.fr/item/SM_1973_21_2_a8/

[1] E. M. Beniaminov, E. G. Sklyarenko, “O lokalnykh gruppakh kogomologii”, DAN SSSR, 176:5 (1967), 987–990 | MR | Zbl

[2] V. I. Kuzminov, “O proizvodnykh funktorakh funktora proektivnogo predela”, Sib. matem. zh., 8:2 (1967), 333–345 | MR

[3] V. I. Kuzminov, I. A. Shvedov, “O gomologiyakh predela spektra bikompaktov”, DAN SSSR, 203:4 (1972), 756–757 | MR

[4] S. Maklein, Gomologiya, izd-vo «Mir», Moskva, 1966

[5] E. G. Sklyarenko, “Teoriya gomologii i aksioma tochnosti”, Uspekhi matem. nauk, XXIV:5 (149) (1969), 87–140

[6] E. G. Sklyarenko, “Teoremy edinstvennosti v teorii gomologii”, Matem. sb., 85 (127) (1971), 201–223 | Zbl

[7] E. G. Sklyarenko, “K teorii obobschennykh mnogoobrazii”, Izv. AN SSSR, seriya matem., 35 (1971), 831–843 | Zbl

[8] A. Borel, J. C. Moore, “Homology theory for locally compact spaces”, Michigan Math. J., 7:2 (1960), 137–160 | DOI | MR

[9] G. E. Bredon, Sheaf theory, New-York, 1967 | MR

[10] L. Fuchs, Abelian groups, Budapest, 1958

[11] O. Jussila, “On homology theory in locally connected spaces, II”, Ann. Acad. scient. Fennicae, 378 (1965), 1–10 | MR