Special spines of piecewise linear manifolds
Sbornik. Mathematics, Tome 21 (1973) no. 2, pp. 279-291

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of so-called special polyhedra is defined for each $n>1$. The following theorems are proved: 1. Every piecewise linear manifold $M^{n+1}$ with boundary can be collapsed to some $n$-dimensional special polyhedron. 2. The manifold $M^{n+1}$ is uniquely determined by this special polyhedron. 3. If $n\geqslant3$, then any special polyhedron can be thickened to an $(n+1)$-dimensional manifold. The author also gives applications of the results obtained to a series of questions connected with the Zeeman conjecture about the collapsibility of $P^2\times I$, where $P^2$ is a contractible polyhedron. Figures: 4. Bibliography: 6 titles.
@article{SM_1973_21_2_a6,
     author = {S. V. Matveev},
     title = {Special spines of piecewise linear manifolds},
     journal = {Sbornik. Mathematics},
     pages = {279--291},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_21_2_a6/}
}
TY  - JOUR
AU  - S. V. Matveev
TI  - Special spines of piecewise linear manifolds
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 279
EP  - 291
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_21_2_a6/
LA  - en
ID  - SM_1973_21_2_a6
ER  - 
%0 Journal Article
%A S. V. Matveev
%T Special spines of piecewise linear manifolds
%J Sbornik. Mathematics
%D 1973
%P 279-291
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_21_2_a6/
%G en
%F SM_1973_21_2_a6
S. V. Matveev. Special spines of piecewise linear manifolds. Sbornik. Mathematics, Tome 21 (1973) no. 2, pp. 279-291. http://geodesic.mathdoc.fr/item/SM_1973_21_2_a6/