On exterior elliptic problems polynomially depending on a spectral parameter, and the asymptotic behavior for large time of solutions of nonstationary problems
Sbornik. Mathematics, Tome 21 (1973) no. 2, pp. 221-239 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper elliptic problems in exterior domains polynomially depending on a spectral parameter $k$ are considered. These problems are obtained from a mixed problem for hyperbolic equations by substituting $k$ for $id/dt$. For such elliptic problems analytic properties of the resolvent are studied in the neighborhood of the point $k=0$, which permits, for the corresponding nonstationary problem, a complete asymptotic expansion of solutions as $t\to\infty$. Bibliography: 11 titles.
@article{SM_1973_21_2_a3,
     author = {B. R. Vainberg},
     title = {On~exterior elliptic problems polynomially depending on a~spectral parameter, and the asymptotic behavior for large time of solutions of nonstationary problems},
     journal = {Sbornik. Mathematics},
     pages = {221--239},
     year = {1973},
     volume = {21},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_21_2_a3/}
}
TY  - JOUR
AU  - B. R. Vainberg
TI  - On exterior elliptic problems polynomially depending on a spectral parameter, and the asymptotic behavior for large time of solutions of nonstationary problems
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 221
EP  - 239
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1973_21_2_a3/
LA  - en
ID  - SM_1973_21_2_a3
ER  - 
%0 Journal Article
%A B. R. Vainberg
%T On exterior elliptic problems polynomially depending on a spectral parameter, and the asymptotic behavior for large time of solutions of nonstationary problems
%J Sbornik. Mathematics
%D 1973
%P 221-239
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1973_21_2_a3/
%G en
%F SM_1973_21_2_a3
B. R. Vainberg. On exterior elliptic problems polynomially depending on a spectral parameter, and the asymptotic behavior for large time of solutions of nonstationary problems. Sbornik. Mathematics, Tome 21 (1973) no. 2, pp. 221-239. http://geodesic.mathdoc.fr/item/SM_1973_21_2_a3/

[1] B. R. Vainberg, “Ob analiticheskikh svoistvakh rezolventy dlya odnogo klassa puchkov operatorov”, Matem. sb., 77 (119) (1968), 259–296 | MR | Zbl

[2] B. R. Vainberg, “Povedenie resheniya zadachi Koshi dlya giperbolicheskogo uravneniya pri $t\to\infty$”, Matem. sb., 78 (120) (1969), 542–578 | MR | Zbl

[3] B. R. Vainberg, “O printsipe predelnoi amplitudy”, Matem. sb., 86 (128) (1971), 90–109 | MR | Zbl

[4] M. S. Agranovich, M. I. Vishik, “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, Uspekhi matem. nauk, XIX:3 (117) (1964), 53–161

[5] I. Ts. Gokhberg, M. G. Krein, “Osnovnye polozheniya o defektnykh chislakh, kornevykh chislakh i indeksakh lineinykh operatorov”, Uspekhi matem. nauk, XII:2 (74) (1957), 44–118 | MR

[6] I. Ts. Gokhberg, “O lineinykh operatorakh, analiticheski zavisyaschikh ot parametra”, DAN SSSR, 78:4 (1951), 629–632 | Zbl

[7] P. M. Blekher, “Ob operatorakh, zavisyaschikh meromorfno ot parametra”, Vestnik MGU, 5 (1969), 30–36 | Zbl

[8] R. C. Mac Camy, “Low frequency acoustic oscillations”, Quart. J. Appl. Math., 23:3 (1965), 247–255 | MR | Zbl

[9] V. M. Babich, “Ob asimptotike funktsii Grina nekotorykh volnovykh zadach. II: Nestatsionarnyi sluchai”, Matem. sb., 87 (129) (1972), 44–57 | Zbl

[10] D. M. Eidus, “Printsip predelnoi amplitudy”, Uspekhi matem. nauk, XXIV:3 (147) (1969), 91–156 | MR

[11] S. G. Mikhlin, Mnogomernye singulyarnye integraly i integralnye uravneniya, Fizmatgiz, Moskva, 1962 | Zbl