On~Magnus groups
Sbornik. Mathematics, Tome 21 (1973) no. 2, pp. 207-220

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider groups of the form $F/V(N)$, where $V(N)$ is a verbal subgroup of a normal divisor $N$ of a group $F$, and $F$ is either free or the free product of certain groups. In the latter case we assume that $N$ is contained in the Cartesian subgroup. We prove that the factors of the lower central series of $F/V(N)$ are torsion-free or even free Abelian if the corresponding property is possessed by the factors of the lower central series of $F/N$ and $N/V(N)$. Bibliography: 7 titles.
@article{SM_1973_21_2_a2,
     author = {D. I. \`Eidel'kind},
     title = {On~Magnus groups},
     journal = {Sbornik. Mathematics},
     pages = {207--220},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_21_2_a2/}
}
TY  - JOUR
AU  - D. I. Èidel'kind
TI  - On~Magnus groups
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 207
EP  - 220
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_21_2_a2/
LA  - en
ID  - SM_1973_21_2_a2
ER  - 
%0 Journal Article
%A D. I. Èidel'kind
%T On~Magnus groups
%J Sbornik. Mathematics
%D 1973
%P 207-220
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_21_2_a2/
%G en
%F SM_1973_21_2_a2
D. I. Èidel'kind. On~Magnus groups. Sbornik. Mathematics, Tome 21 (1973) no. 2, pp. 207-220. http://geodesic.mathdoc.fr/item/SM_1973_21_2_a2/