On~Magnus groups
Sbornik. Mathematics, Tome 21 (1973) no. 2, pp. 207-220
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we consider groups of the form $F/V(N)$, where $V(N)$ is a verbal subgroup of a normal divisor $N$ of a group $F$, and $F$ is either free or the free product of certain groups. In the latter case we assume that $N$ is contained in the Cartesian subgroup. We prove that the factors of the lower central series of $F/V(N)$ are torsion-free or even free Abelian if the corresponding property is possessed by the factors of the lower central series of $F/N$ and $N/V(N)$.
Bibliography: 7 titles.
@article{SM_1973_21_2_a2,
author = {D. I. \`Eidel'kind},
title = {On~Magnus groups},
journal = {Sbornik. Mathematics},
pages = {207--220},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {1973},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1973_21_2_a2/}
}
D. I. Èidel'kind. On~Magnus groups. Sbornik. Mathematics, Tome 21 (1973) no. 2, pp. 207-220. http://geodesic.mathdoc.fr/item/SM_1973_21_2_a2/