A~priori estimates and the Fredholm property for a~class of pseudo\-differential operators
Sbornik. Mathematics, Tome 21 (1973) no. 2, pp. 191-206

Voir la notice de l'article provenant de la source Math-Net.Ru

Pseudodifferential operators with symbols $A(x,\xi)$ satisfying \begin{equation} |D^\beta_xD_\xi^\alpha A(x,\xi)|\leqslant C^A_{\alpha,\beta}(1+|\xi'|)^{m'-|\alpha'|}(1+|\xi''|)^{m''-|\alpha''|} \end{equation} for all multi-indices $\alpha$, $\beta$, where $\xi=(\xi',\xi'')$ and $\alpha=(\alpha',\alpha'')$, are considered. For operators of this class a priori estimates (in part as well as all of the variables) are established. Necessary and sufficient conditions are found for some classes of pseudodifferential operators with symbols satisfying (1) to have the Fredholm property. Bibliography: 11 titles.
@article{SM_1973_21_2_a1,
     author = {V. S. Rabinovich},
     title = {A~priori estimates and the {Fredholm} property for a~class of pseudo\-differential operators},
     journal = {Sbornik. Mathematics},
     pages = {191--206},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_21_2_a1/}
}
TY  - JOUR
AU  - V. S. Rabinovich
TI  - A~priori estimates and the Fredholm property for a~class of pseudo\-differential operators
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 191
EP  - 206
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_21_2_a1/
LA  - en
ID  - SM_1973_21_2_a1
ER  - 
%0 Journal Article
%A V. S. Rabinovich
%T A~priori estimates and the Fredholm property for a~class of pseudo\-differential operators
%J Sbornik. Mathematics
%D 1973
%P 191-206
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_21_2_a1/
%G en
%F SM_1973_21_2_a1
V. S. Rabinovich. A~priori estimates and the Fredholm property for a~class of pseudo\-differential operators. Sbornik. Mathematics, Tome 21 (1973) no. 2, pp. 191-206. http://geodesic.mathdoc.fr/item/SM_1973_21_2_a1/