On the convergence of Padé approximants
Sbornik. Mathematics, Tome 21 (1973) no. 1, pp. 155-166 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that if a function $f$ analytic at zero is similar to the rational functions ($f\in R^0$), the corresponding diagonal Padé sequence $\{\pi_n\}$ converges to $f$ in capacity inside of its natural domain of existence $W_f$. Bibliography: 15 titles.
@article{SM_1973_21_1_a7,
     author = {A. A. Gonchar},
     title = {On~the convergence of {Pad\'e} approximants},
     journal = {Sbornik. Mathematics},
     pages = {155--166},
     year = {1973},
     volume = {21},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_21_1_a7/}
}
TY  - JOUR
AU  - A. A. Gonchar
TI  - On the convergence of Padé approximants
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 155
EP  - 166
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1973_21_1_a7/
LA  - en
ID  - SM_1973_21_1_a7
ER  - 
%0 Journal Article
%A A. A. Gonchar
%T On the convergence of Padé approximants
%J Sbornik. Mathematics
%D 1973
%P 155-166
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1973_21_1_a7/
%G en
%F SM_1973_21_1_a7
A. A. Gonchar. On the convergence of Padé approximants. Sbornik. Mathematics, Tome 21 (1973) no. 1, pp. 155-166. http://geodesic.mathdoc.fr/item/SM_1973_21_1_a7/

[1] O. Perron, The Lehre von den Kettenbrüchen, Chelsea Publ. Comp., New York, 1950 | MR | Zbl

[2] H. S. Wall, Analytic theory of continued fractions, Van Nostrand, New York, 1948 | MR | Zbl

[3] G. A. Baker Jr., “The Theory and Application of the Pade Approximant Method”, Advances in Theoretical Physics, ed. Brueckner, Academic Press, New York, 1965, 1–58 | MR

[4] G. A. Baker Jr., “The Padé Approximant Method and Some Related Generalizations”, The Padé Approximant in Theoretical Physics, eds. Baker, Gammel, Academic Press, New York, 1970, 1–39

[5] J. Nuttall, “The convergence of Padé approximants of meromorphic functions”, J. Math. Anal. Appl., 31 (1970), 147–153 | DOI | MR

[6] Ch. Pommerenke, Padé approximants and convergence in capacity, preprint | MR | Zbl

[7] H. Wallin, The convergence of Padé approximants and the size of the power series coefficients, preprint | MR

[8] A. A. Gonchar, “Lokalnoe uslovie odnoznachnosti analiticheskikh funktsii”, Matem. sb., 89 (131) (1972), 148–164 | Zbl

[9] Dzh. L. Uolsh, Interpolyatsiya i approksimatsiya ratsionalnymi funktsiyami v kompleksnoi oblasti, IL, Moskva, 1961 | MR

[10] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, izd-vo «Nauka», Moskva, 1966 | MR

[11] N. S. Landkof, Osnovy sovremennoi teorii potentsiala, izd-vo «Nauka», Moskva, 1966 | MR

[12] A. A. Gonchar, “O zadachakh E. I. Zolotareva, svyazannykh s ratsionalnymi funktsiyami”, Matem. sb., 78 (120) (1969), 640–654 | Zbl

[13] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, Gostekhizdat, Moskva, 1956

[14] R. Nevanlinna, Odnoznachnye analiticheskie funktsii, Moskva–Leningrad, 1941 | Zbl

[15] A. A. Gonchar, “O ryadakh ratsionalnykh funktsii”, DAN SSSR, 143:6 (1962), 1246–1249 | Zbl