A~local Torelli theorem for cyclic coverings of $P^n$ with positive canonical class
Sbornik. Mathematics, Tome 21 (1973) no. 1, pp. 145-154

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove a local Torelli theorem for cyclic coverings of $P^n$ with $K>0$, and also for varieties which have $K>0$, with $|K|$ having no fixed components and which is not a pencil, $h^{n-1,0}(V)=0$ and $\dim H^0(V,\Omega^{n-1}(K))$. Bibliography: 5 titles.
@article{SM_1973_21_1_a6,
     author = {K. I. Kii},
     title = {A~local {Torelli} theorem for cyclic coverings of $P^n$ with positive canonical class},
     journal = {Sbornik. Mathematics},
     pages = {145--154},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_21_1_a6/}
}
TY  - JOUR
AU  - K. I. Kii
TI  - A~local Torelli theorem for cyclic coverings of $P^n$ with positive canonical class
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 145
EP  - 154
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_21_1_a6/
LA  - en
ID  - SM_1973_21_1_a6
ER  - 
%0 Journal Article
%A K. I. Kii
%T A~local Torelli theorem for cyclic coverings of $P^n$ with positive canonical class
%J Sbornik. Mathematics
%D 1973
%P 145-154
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_21_1_a6/
%G en
%F SM_1973_21_1_a6
K. I. Kii. A~local Torelli theorem for cyclic coverings of $P^n$ with positive canonical class. Sbornik. Mathematics, Tome 21 (1973) no. 1, pp. 145-154. http://geodesic.mathdoc.fr/item/SM_1973_21_1_a6/