A local Torelli theorem for cyclic coverings of $P^n$ with positive canonical class
Sbornik. Mathematics, Tome 21 (1973) no. 1, pp. 145-154
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we prove a local Torelli theorem for cyclic coverings of $P^n$ with $K>0$, and also for varieties which have $K>0$, with $|K|$ having no fixed components and which is not a pencil, $h^{n-1,0}(V)=0$ and $\dim H^0(V,\Omega^{n-1}(K)). Bibliography: 5 titles.
@article{SM_1973_21_1_a6,
author = {K. I. Kii},
title = {A~local {Torelli} theorem for cyclic coverings of $P^n$ with positive canonical class},
journal = {Sbornik. Mathematics},
pages = {145--154},
year = {1973},
volume = {21},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1973_21_1_a6/}
}
K. I. Kii. A local Torelli theorem for cyclic coverings of $P^n$ with positive canonical class. Sbornik. Mathematics, Tome 21 (1973) no. 1, pp. 145-154. http://geodesic.mathdoc.fr/item/SM_1973_21_1_a6/
[1] P. A. Griffiths, “Periods of integrals on algebraic manifolds, II”, Amer. J. Math., 90:3 (1968), 805–866 | DOI | MR
[2] P. A. Griffiths, “On the periods of certain rational integrals, I”, Ann. Math., 90:3 (1969), 460–496 | DOI | MR | Zbl
[3] J. Wavric, “Deformations of branched covering of complex manifolds”, Amer. J. Math., 90:3 (1968), 1926–1961
[4] Chzhen Shen-shen, Kompleksnye mnogoobraziya, IL, Moskva, 1961
[5] M. Baldassarri, Algebraicheskie mnogoobraziya, IL, Moskva, 1961 | MR