Axiomatics of the dimension of metric spaces
Sbornik. Mathematics, Tome 21 (1973) no. 1, pp. 137-143
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we prove that there exists a unique function $\dim X$ which assigns to every finite-dimensional metric space $X$ an integer $dX$ such that the following axioms are satisfied.
Axiom 1. $dT^n=n$ $(T^n$ is an $n$-dimensional simplex).
\smallskip
Axiom 2. $d\bigcup^\infty_iX_i=\max_idX_i$ if all $X_i$ are closed in $\bigcup^\infty_iX_i=X$.
\smallskip
Axiom 3. For every $X$ there exists a finite open cover $\omega$ such that $dY\geqslant dX$ for every $\omega$-mapping $f\colon X\to Y$.
\smallskip
Axiom 4. For every $X$ there exists a closed subset $A$ such that $dA$ and $X\setminus A$ is not connected. Bibliography: 2 titles.
@article{SM_1973_21_1_a5,
author = {E. V. Shchepin},
title = {Axiomatics of the dimension of metric spaces},
journal = {Sbornik. Mathematics},
pages = {137--143},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {1973},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1973_21_1_a5/}
}
E. V. Shchepin. Axiomatics of the dimension of metric spaces. Sbornik. Mathematics, Tome 21 (1973) no. 1, pp. 137-143. http://geodesic.mathdoc.fr/item/SM_1973_21_1_a5/