Axiomatics of the dimension of metric spaces
Sbornik. Mathematics, Tome 21 (1973) no. 1, pp. 137-143

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove that there exists a unique function $\dim X$ which assigns to every finite-dimensional metric space $X$ an integer $dX$ such that the following axioms are satisfied. Axiom 1. $dT^n=n$ $(T^n$ is an $n$-dimensional simplex). \smallskip Axiom 2. $d\bigcup^\infty_iX_i=\max_idX_i$ if all $X_i$ are closed in $\bigcup^\infty_iX_i=X$. \smallskip Axiom 3. For every $X$ there exists a finite open cover $\omega$ such that $dY\geqslant dX$ for every $\omega$-mapping $f\colon X\to Y$. \smallskip Axiom 4. For every $X$ there exists a closed subset $A$ such that $dA$ and $X\setminus A$ is not connected. Bibliography: 2 titles.
@article{SM_1973_21_1_a5,
     author = {E. V. Shchepin},
     title = {Axiomatics of the dimension of metric spaces},
     journal = {Sbornik. Mathematics},
     pages = {137--143},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_21_1_a5/}
}
TY  - JOUR
AU  - E. V. Shchepin
TI  - Axiomatics of the dimension of metric spaces
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 137
EP  - 143
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_21_1_a5/
LA  - en
ID  - SM_1973_21_1_a5
ER  - 
%0 Journal Article
%A E. V. Shchepin
%T Axiomatics of the dimension of metric spaces
%J Sbornik. Mathematics
%D 1973
%P 137-143
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_21_1_a5/
%G en
%F SM_1973_21_1_a5
E. V. Shchepin. Axiomatics of the dimension of metric spaces. Sbornik. Mathematics, Tome 21 (1973) no. 1, pp. 137-143. http://geodesic.mathdoc.fr/item/SM_1973_21_1_a5/