Spectral problems for pseudodifferential systems elliptic in the Douglis–Nirenberg sense, and their applications
Sbornik. Mathematics, Tome 21 (1973) no. 1, pp. 63-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Pseudodifferential systems elliptic in the Douglis–Nirenberg sense on a compact manifold without boundary are studied. A theorem on the completeness of the generalized eigenvectors is proved. It is not assumed here that all orders of the operators of the system situated on the main diagonal are equal. The formula $N(\lambda)\overset{\text{def}}=\sum_{\operatorname{Re}\lambda_j\leqslant\lambda}1\sim C\lambda^{n/s}$ is obtained, where the $\lambda_j$ are the eigenvalues of the system taking account of the root multiplicity, $n$ is the dimension of the manifold, $\mu$ is the minimum order of the operators of the system situated on the main diagonal and $C$ is a constant expressed in terms of the symbol. This formula permits us to determine the asymptotic behavior of the eigenvalues for general elliptic boundary value problems containing $\lambda$ in the boundary conditions. Bibliography: 23 titles.
@article{SM_1973_21_1_a3,
     author = {A. N. Kozhevnikov},
     title = {Spectral problems for pseudodifferential systems elliptic in the {Douglis{\textendash}Nirenberg} sense, and their applications},
     journal = {Sbornik. Mathematics},
     pages = {63--90},
     year = {1973},
     volume = {21},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_21_1_a3/}
}
TY  - JOUR
AU  - A. N. Kozhevnikov
TI  - Spectral problems for pseudodifferential systems elliptic in the Douglis–Nirenberg sense, and their applications
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 63
EP  - 90
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1973_21_1_a3/
LA  - en
ID  - SM_1973_21_1_a3
ER  - 
%0 Journal Article
%A A. N. Kozhevnikov
%T Spectral problems for pseudodifferential systems elliptic in the Douglis–Nirenberg sense, and their applications
%J Sbornik. Mathematics
%D 1973
%P 63-90
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1973_21_1_a3/
%G en
%F SM_1973_21_1_a3
A. N. Kozhevnikov. Spectral problems for pseudodifferential systems elliptic in the Douglis–Nirenberg sense, and their applications. Sbornik. Mathematics, Tome 21 (1973) no. 1, pp. 63-90. http://geodesic.mathdoc.fr/item/SM_1973_21_1_a3/

[1] L. Khërmander, “Psevdodifferentsialnye operatory i neellipticheskie kraevye zadachi”, Psevdodifferentsialnye operatory, izd-vo «Mir», Moskva, 1967, 166–296

[2] G. Geymonat, P. Grisvard, “Alcuni risultati di teoria spettrale per i problemi ai limiti lineari ellittici”, Rend. Sem. Mat. Padova, 38 (1967), 121–173 | MR | Zbl

[3] V. I. Feigin, “O polnote sobstvennykh i prisoedinennykh vektorov v zadachakh s parametrom v granichnykh usloviyakh”, Uspekhi matem. nauk, XXIV:6 (150) (1969), 195–196 | MR

[4] S. Agmon, “On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems”, Comm. Pure and Appl. Math., 15 (1962), 119–147 | DOI | MR | Zbl

[5] R. T. Seeley, “Complex powers of an elliptic operator”, Proc. Symp. in Pure Math., 10 (1968), 288–307 | MR

[6] J. Odhnoff, “Operators generated by differential problems with eigenvalue parameter in equation and boundary condition”, Medd. Lunds Univ. Mat. Sem., 1959, 1–80 | MR | Zbl

[7] J. Ercolano, M. Schechter, “Spectral theory for operators generated by elliptic boundary conditions. I; II”, Comm. Pure and Appl. Math., 18 (1965), 83–105 ; 397–414 | DOI | MR | Zbl | MR

[8] V. V. Barkovskii, “Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, sootvetstvuyuschikh obschim ellipticheskim zadacham s sobstvennym znacheniem v granichnykh usloviyakh”, Ukr. matem. zh., 19:1 (1967), 9–24 | MR | Zbl

[9] A. N. Kozhevnikov, “Ob asimptotike sobstvennykh znachenii i polnote kornevykh vektorov operatora, porozhdennogo kraevoi zadachei so spektralnym parametrom v granichnom uslovii”, DAN SSSR, 200:6 (1971), 1273–1276 | Zbl

[10] R. Pale, Seminar po teoreme Ati-Zingera ob indekse, izd-vo «Mir», Moskva, 1970 | MR

[11] K. Iosida, Funktsionalnyi analiz, izd-vo «Mir», Moskva, 1967 | MR

[12] E. Khille, R. Filipps, Funktsionalnyi analiz i polugruppy, IL, Moskva, 1962

[13] N. Danford, Dzh. Shvarts, Lineinye operatory, t. II, izd-vo «Mir», Moskva, 1966

[14] M. S. Agranovich, M. I. Vishik, “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, Uspekhi matem. nauk, XIX:3 (117) (1964), 53–161

[15] L. Khërmander, “Psevdodifferentsialnye operatory i gipoellipticheskie uravneniya”, Psevdodifferentsialnye operatory, izd-vo «Mir», Moskva, 1967, 297–367

[16] R. T. Seeley, “The resolvent of an elliptic boundary problem”, Amer. J. Math., 91:4 (1969), 889–920 | DOI | MR | Zbl

[17] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, izd-vo «Nauka», Moskva, 1965

[18] D. Fujiwara, “On the asymptotic formula for the Green functions of elliptic operators on compact manifolds”, J. Fac. Sci. Univ. Tokyo, Sec. I, 14:2 (1967), 251–283 | MR | Zbl

[19] A. G. Kostyuchenko, Doktorskaya dissertatsiya, MGU, Moskva, 1966

[20] S. Misohata, “Sur les propriétés asymptotiques des valeurs propres pour les operateurs elliptiques”, J. Math. Kyoto Univ., 4–5 (1965), 399–428 | MR

[21] B. R. Vainberg, V. V. Grushin, “O ravnomerno neellipticheskikh zadachakh”, Matem. sb., 73 (115) (1967), 126–159 | MR

[22] R. A. Aleksandryan, Yu. M. Berezanskii, V. A. Ilin, A. G. Kostyuchenko, “Nekotorye voprosy spektralnoi teorii dlya uravnenii s chastnymi proizvodnymi”, Trudy simpoziuma, posvyasch. 60-letiyu S. L. Soboleva, izd-vo «Nauka», Moskva, 1970, 3–35

[23] Yu. M. Berezanskii, “Obzor po spektralnoi teorii samosopryazhennykh differentsialnykh operatorov v prostranstve $L_2$”, Trudy seminara po funkts. analizu, no. 2, in-t matem. AN USSR, 1970, 3–135